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Coherence measurements with the two-photon Michelson interferometer
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The interference of entangled photon pairs permits the study of the fundamental properties of quantum
mechanics. The process is also finding practical applications in optical imaging. The Michelson interferometer
provides an elegant means for characterizing the degree of two-photon entanglement, but the technique has not
yet been described and analyzed in detail. Here we provide a full description of the interference of collinear
down-converted photons in a Michelson interferometer. We explain the basic elements that characterize the
interference pattern and complement the theory with experimental measurements. The two-photon Michelson
interferometer can be used in quantum optical coherence tomography for dispersion-free imaging and localization.
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I. INTRODUCTION

The seminal paper of Einstein, Podolsky, and Rosen (EPR)
analyzes a thought experiment that is based on the combined
quantum state of two spatially separate systems [1]. Two par-
ticles with known quantum states interact for a period of time
and then separate. After the interaction, it is no longer possible
to determine the quantum state of each particle separately.
According to quantum mechanics, the combined system of
particles I + II has become entangled. The measurement of
one particle instantly modifies the state of the second particle,
even if the two particles are spatially separated. The EPR
paper criticizes this interpretation of quantum mechanics and
argues that the theory is incomplete. The missing parameters
are known as hidden variables. Entanglement remained a
philosophical topic until the paper of J. S. Bell [2], who showed
that by performing correlation experiments, one is capable of
testing the predictions of quantum mechanics and of hidden-
variable theories. Bell’s correlation measurements have been
tested [3–5] and the results agree with the description of
quantum mechanics.

Photons are particularly attractive for studying the impli-
cations of entanglement since the generation of correlated
photons is possible with the process of spontaneous para-
metric down-conversion (SPDC) [6,7]. This nonlinear process
produces pairs of photons that are correlated in time, energy,
and momentum. SPDC was first predicted to be a background
noise term in the process of parametric amplification and has
been termed “parametric luminescence” [8]. The statistical
properties of SPDC were studied by Zel’dovich et al. [6]
and experimentally measured by Burnham et al. [7]. Photons
generated by SPDC cannot be explained by two independent
sources and their correlation is intimately related by the energy
uncertainty and emission time.

The properties of down-converted photons can be under-
stood on the basis of energy and momentum conservation. A
single photon, called the pump, propagating in a nonlinear
crystal can spontaneously split into two photons, called signal
and idler. Energy conservation implies that the frequencies
of the photons satisfy ωp = ωs + ωi , where p, s, and i

refer to pump, signal, and idler, respectively. The direction
of the photons is determined by momentum conservation,
kp = ks + ki . After the work of Burnham et al. [7], SPDC

has been used in various experiments for the generation of
entangled photon pairs. Entanglement in various degrees of
freedom has been demonstrated, for example, in polarization
[9,10], energy [11], and momentum [12].

The interference of down-converted photons was thor-
oughly studied by Mandel and collaborators [13]. Traditional
interference measurements typically employ a single-photon
detector to measure the probability of detecting a photon as a
function of the phase difference between the interferometer
arms. Interference occurs because the two optical paths
are indistinguishable, meaning that the experiment cannot
distinguish which path was chosen by the photon. On the
other hand, two-photon interference detects photon pairs and
measures the probability of simultaneously detecting two
photons with a pair of photodetectors. The probability of
detecting coincidences depends on the phase difference in
the two interferometer arms. Interference occurs due to the
indistinguishability of the different ways the photon pairs can
propagate through the interferometer. Two-photon interference
with photon pairs generated by SPDC has become a standard
tool for studying the quantum properties of light [13].

Two-photon interference with down-converted photons has
evolved into several applications [14–16]. In particular, quan-
tum optical coherence tomography (QOCT) uses frequency-
entangled photons in a Hong-Ou-Mandel [17] interferometer
in order to generate depth resolution in the imaging of a sample
positioned in one of the interferometer arms. QOCT improves
depth resolution by a factor of two compared with its classical
counterpart. In addition, QOCT is immune to dispersion effects
because of photon entanglement.

In recent decades, several experiments have been under-
taken to demonstrate fourth-order interference effects using
entangled down-converted photons [10,11,17–22]. Most of
these studies concentrate on the nonlocal nature of entangle-
ment and the violation of Bell inequalities. These experiments
rely on a spatial separation of entangled photons pairs, i.e., the
down-converted photons are not collinear. For example, the
Franson experiment [11,23] uses two separate interferometers
to observe the violation of a Bell inequality in position and
time. Another example is the demonstration of entangled
photon bunching with a Hong-Ou-Mandel interferometer
[17], where two noncollinear down-converted photons enter
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separate input ports of a beam splitter. However, there are only
a few fourth-order interference experiments that use collinear
down-converted photons. In the collinear geometry, down-
converted photon pairs become spatially indistinguishable.

Galvez et al. and Odate et al. have recently measured
collinear fourth-order interference [24,25], but these studies
did not consider the spectral properties of the pump photons.
Furthermore, the measurements have been performed for
restricted path-length differences. In the present study, we
account for the spectral density of the pump and record
a complete fourth-order interferogram. We show that the
interferogram is significantly influenced by the coherence
properties of the pump laser and we derive an equation
that accounts for the pump’s spectral density. A quantitative
comparison of theory and experiment is presented.

In order to realize a test of Bell’s inequality, we require
spatially separated, down-converted photons. For the collinear
case, the degree of photon-pair entanglement is determined by
the ratio of the emission bandwidth to the pump bandwidth.
Our measurements show that the fourth-order interferogram is
influenced by the degree of entanglement in a controllable and
predictive manner. Our experiments make use of a two-photon
Michelson interferometer, but similar results could be obtained
using a Mach-Zehnder interferometer, which is equivalent to
selecting a different output port.

This paper is organized as follows: Sec. II introduces basic
concepts and presents a derivation of the joint spectral density
of down-converted photons pairs. Section III analyzes the
interference pattern recorded with a two-photon Michelson
interferometer. Section IV presents experimental data and a
comparison with theory. Finally, in Sec. V, we provide a
discussion that includes possible applications.

II. THE JOINT SPECTRAL DENSITY OF ENTANGLED
DOWN-CONVERTED PHOTONS

Let us start with a single-photon wave-packet state, written
as a weighted superposition of monochromatic modes [26],

|1〉 =
∫

dω φ(ω)|ω〉, (1)

with φ(ω) being the probability amplitude of state |ω〉. For
the purpose of this paper, we consider linear polarization
and propagation in one dimension. A monochromatic mode
|ω〉 is the ket representation of a monochromatic plane wave
with frequency ω. The monochromatic modes satisfy the or-
thogonality condition 〈ω′|ω〉 = δ(ω′ − ω), which ensures that
〈ω′|1〉 = φ(ω′). According to the interpretation of quantum
mechanics, |〈ω′|1〉|2 = |φ(ω′)|2 is the probability that when
the photon is detected, |1〉 collapses into the state |ω′〉. The
function �(ω) = |φ(ω)|2 is the spectral density, which is
equivalent to the frequency spectrum. �(ω) is normalized
[
∫

�(ω)dω = 1] and has a center frequency ω and bandwidth
�ω.

A photodetector measures photon absorption without dis-
tinguishing between different frequency components. There-
fore, the probability P1 of detecting a single-photon state is
equivalent to P1 = ∫

dω′|〈ω′|1〉|2, where the integration is over
the monochromatic modes that enter the detector. For example,
consider that the detector records all of the monochromatic

modes of the state given in Eq. (1). Then, the probability
of detecting that photon is

∫
dω′�(ω′) = 1. However, if we

spatially separate the monochromatic modes (e.g., using a
prism) and project them in a photodetector array, then only one
cell of the array will respond. The probability of responding
will be given by �(ω′) dω′.

Let us now consider the detection of two photons. The
quantum state |1,1〉 of a pair of photons is given by the
joint state |1,1〉 = |1〉⊗ |1〉. This state is more subtle than
the single-photon state defined in Eq. (1). If the detection
of one photon does not alter the state of the second photon,
then the two photons are independent and the joint state is
separable. But, if the detection of one photon affects the state
of the second photon, then |1,1〉 is entangled. The joint state
of two photons can be written as

|1,1〉 =
∫∫

dω1dω2 φ(ω1,ω2)|ω1〉|ω2〉. (2)

For the following, we assume that the monochromatic modes
have the same polarization and propagation direction. The joint
spectral density �(ω1,ω2) = |φ(ω1,ω2)|2 is the probability of
detecting one photon with frequency ω1 and a second photon
with frequency ω2. The joint spectral density is normalized,∫

dω1dω2�(ω1,ω2) = 1. If φ(ω1,ω2) can be factored into
separate functions of ω1 and ω2, then the state |1,1〉 is
separable, otherwise it is entangled.

A separable state can be expressed as the product
of two photons, |1,1〉 = |1(ω1)〉|1(ω2)〉, where |1(ωi)〉 =∫

dωiφ(ωi)|ωi〉 (i = 1,2). The joint spectral density becomes
�(ω1,ω2) = �1(ω1)�2(ω2). If each photon is symmetric with
respect to a center angular frequency ω0, then the joint spectral
density of a separable state is symmetric in the plane (ω1,ω2)
with respect to (ω1,ω2) = (ω0,ω0), as shown in Fig. 1(a).
On the contrary, �(ω1,ω2) is asymmetric for an entangled
state and depends on the correlation between both photons.
For example, Fig. 1(b) shows the joint spectral density of an
anticorrelated entangled state. Note that an entangled state is
a state which cannot be factored in any basis [27] and that the
entangled state defined by Eq. (2) is denoted a time-energy
entangled state.
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ω2(a) (b)
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ω2
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FIG. 1. (Color online) The joint spectral density �(ω1,ω2) =
|φ(ω1,ω2)|2 of a two-photon state, |1,1〉 = ∫∫

dω1dω2 φ(ω1,ω2)
|ω1,ω2〉, can be either (a) separable or (b) entangled. ω0 is the
center angular frequency of each photon. If the state is separable,
then �(ω1,ω2) is symmetric in the plane (ω1,ω2), centered at ω0,
and the state |1,1〉 can be factored as the product of two photons,
|1,1〉 = |1(ω1)〉|1(ω2)〉. If the two photons are in an energy-entangled
state, then |1,1〉 cannot be factored and the joint spectral density is
asymmetric in the plane (ω1,ω2).
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Typical photodetectors cannot resolve the number of
photons received. Therefore, two-photon states are measured
using correlations between two separate photodetector sig-
nals. The probability of detecting a two-photon state is
P1,2 = ∫∫

dω′
1dω′

2|〈ω′
1,ω

′
2|1,1〉|2.

A. The quantum state of down-converted photons

A widely used method for generating energy-entangled
photons is spontaneous parametric down-conversion (SPDC).
In this nonlinear process, a pump photon is spontaneously split
into two photons. The daughter photons are traditionally called
signal and idler. SPDC takes place inside a nonlinear crystal
with a χ (2) nonlinearity. Energy and momentum conservation
imply h̄ωp = h̄ωs + h̄ωi and h̄kp = h̄ks + h̄ki , respectively,
where h̄ωj and h̄kj (j = p,s,i) are the energies and momenta
of the pump (p), signal (s), and idler (i) photons. Due to the fact
that there are many ways to partition the energy of the pump
photon, the signal and idler photons have a broad spectral
density. SPDC produces energy-entangled states of the form
|1,1〉 = ∫ ωp

0 dω φ(ω)|ω〉|ωp − ω〉, where ωp is the energy of
the pump photon and |φ(ω)|2 is the joint spectral density.
Clearly, the state cannot be factored and the two photons
are entangled. It is also possible to prepare the photons in a
momentum-entangled state by filtering the emission directions
of the down-converted photons, or in a polarization-entangled
state. It is even possible to create hyperentangled states [27].

The SPDC process is commonly classified according to
the polarization of the down-converted photons. In type-I
SPDC, signal and idler photons have polarization directions
orthogonal to the pump polarization. In type-II SPDC, the
polarization of signal and idler photons are orthogonal, with
one of them having the same polarization as the pump. If the
center frequencies of signal and idler are the same, ωs = ωi =
ω0, then one speaks of degenerate down-conversion. In the case
when the down-converted photon pairs propagate collinearly,
the photons must be degenerate. For the purpose of this paper,
we consider type-I, collinear, down-converted photons with
degenerate center angular frequency ω0 = ωp/2, where ωp is
the center angular frequency of the pump laser.

The joint spectral density �(ωs,ωi) = |φ(ωs,ωi)|2 of the
down-converted photons depends on the pump spectral density
P (ωp) = |p(ωp)|2 and the physical properties of the nonlinear
crystal. In what follows, P (ωp) has a bandwidth �ωp

(FWHM) and center angular frequency ωp. φ(ωs,ωi) has been

calculated by Ou [28] as

φ(ωs,ωi) =
∫

dωpp(ωp)h(ωs,ωi,ωp)δ(ωs + ωi − ωp), (3)

h(ωs,ωi,ωp) = sinc(�KL/2), (4)

with h(ωs,ωi,ωp) being the phase-matching function
and �K = [ne(ωp)ωp − no(ωs)ωs − no(ωi)ωi]/c being the
phase-matching condition; and for a uniaxial crystal with
extraordinary and ordinary index of refraction, ne and no, re-
spectively, L is the length of the crystal. The δ(ωs + ωi − ωp)
is associated with the conservation of energy.

We proceed to discuss the characteristics of the joint
spectral density. After integrating over the δ function in Eq. (3),
we obtain

�(ωs,ωi) = P (ωs + ωi)H (ωs,ωi). (5)

The function H (ωs,ωi) = |h(ωs,ωi,ωs + ωi)|2 corresponds to
a bandpass function with bandwidth �ωH and center angular
frequency ωH = ωp/2. The bandwidth �ωH depends on the
group-velocity dispersion k′′

o = d2ko/dω2|ω=ω0 , where ko =
no (ω)ω/c, by the relation �ωH = 2

√
2π/L|k′′

o |. Typically,
�ωH is of the order of 1012∼13 Hz. In general, for a cw
pump laser, �ωH > �ωp. As mentioned before, an entangled
two-photon state corresponds to an asymmetric joint spectral
density. We will show that the degree of entanglement is
proportional to γ = �ωH/�ωp. However, γ is only a relative
value that can be used for comparison between experiments.
For example, compared to a pulsed laser, the degree of entan-
glement generated by a cw laser is higher since �ω(Pulsed)

p >

�ω(cw)
p and hence γ (Pulsed) < γ (cw). Unfortunately, a more

robust parameter of the degree of entanglement (e.g., a Bell’s
inequality) cannot be realized with collinear entangled photons
(we need two spatially separated interferometers [11]). Still,
since the interference pattern depends on �(ωs,ωi), we can
infer from the interferogram whether the joint spectral density
is separable or entangled.

Figure 2 shows the joint spectral density of type-I down-
converted photons for a cw pump laser. We consider that
the spectrum of the pump photons P (ωp) is Gaussian. The
bandwidth of P (ωp) controls the width of the joint spectral
density along ωs = ωi . For a narrow pump bandwidth, the
spectrum is concentrated along the line ωs + ωi = ωp; on the
other hand, for a large pump bandwidth (e.g., a pulsed laser),
the spectrum is smeared out in the plane (ω1,ω2) and the degree
of entanglement is considerably reduced, since γ → 0 as �ωp

is increased.
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FIG. 2. (Color online) The joint spectral
density of type-I down-converted photons,
�(ωs,ωi) = P (ωs + ωi)H (ωs,ωi), depends on
the spectral density P (ωp) of the pump photons
and the phase-matching function H (ωs,ωi) of the
crystal. The degree of entanglement is propor-
tional to the ratio γ = �ωH /�ωp , where �ωp

and �ωH are the bandwidths of the pump laser
and the phase-matching function, respectively.
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The detection of photon pairs is accomplished by two
photodetectors working in coincidence. Bandpass filters can be
introduced in the light path either after the crystal or in front of
the photodetectors. The filters modify the joint spectral density
as

�(ωs,ωi) → Fs(ωs)Fi(ωi)�(ωs,ωi), (6)

where Fs and Fi are the spectral transmissivities of the filters
in detection paths s and i, respectively. We will assume that
the bandpass filters have the following normalized spectral
transmissivity:

F (ω) =
{

1/�ωF |ω − ωF | < �ωF /2

0 |ω − ωF | > �ωF /2,
(7)

where ωF is the central frequency and �ωF is the bandwidth.
The bandpass filters select a frequency region in the (ωs,ωi)
plane. Therefore, the quantum state and the factor γ are
modified after the filters. To avoid reducing the degree of
entanglement, it is favorable that the bandwidth of the filters
satisfies �ωF > �ωp.

Let us now rewrite the two-photon state by substituting
Eq. (3) into Eq. (2), but instead of integrating over ωp, we
integrate over ωi ,

|1,1〉 =
∫∫

dωsdωpφ(ωs,ωp − ωs)|ωs〉|ωp − ωs〉. (8)

We have used φ(ωs,ωp − ωs) = p(ωp)h(ωs,ωp − ωs,ωp). In
this form, the pump spectral density depends on a single
variable. Furthermore, since �ωH > �ωp for a cw laser, we
can assume that H ≈ 1 in the spectral region defined by the
filters. We further assume that the filters are identical and
that their central frequency is ωF ≈ ω0. Furthermore, the filter
bandwidth is larger than the linewidth of the pump laser, which
yields �ωp < �ωF < �ωH . Making use of the symmetry of
the bandpass filters, F (ωs) = F (ωp − ωs) and F (ω) ∝ F 2(ω),
allows us to write the joint spectral density in the compact form

�(ωs,ωp − ωs) ≈ P (ωp)F (ωs). (9)

Thus, the joint spectral density and hence the degree of entan-
glement can be controlled with two experimental parameters:
the bandwidth of the pump laser and the bandwidth of the
filters.

III. ANALYSIS OF THE TWO-PHOTON
MICHELSON INTERFEROMETER

As illustrated in Fig. 3, we will compare the operating
principles of the one-photon and the two-photon Michelson
interferometer [13]. In the former, a single photon enters the
interferometer and a single photodetector D1 measures the
probability P1(τ ) of detecting the photon as a function of
the time difference τ = t2 − t1 (or path-length difference x)
defined by the arm lengths of the interferometer. Because
the interference pattern or interferogram depends on the
second power of the optical field, we refer to P1(τ ) as the
second-order interferogram. In the two-photon Michelson
interferometer, photon pairs enter the interferometer and two
photodetectors working in coincidence are used to measure the
joint probability P1,2(τ ) of detecting one photon at D1 and one

(b)(a)

D1

single 
counts

coincidence
counts

D1

D2

arm 1

arm 2
A

B

D
C

FIG. 3. (Color online) Illustration of one-photon and two-photon
Michelson interferometers. (a) In a one-photon Michelson interfer-
ometer, one photodetector measures the probability of detecting a
single photon as a function of the time difference τ defined by
the path-length difference x of the interferometer arms. (b) In a
two-photon Michelson interferometer, two photodetectors working in
coincidence are used to measure the simultaneous arrival of photon
pairs as a function of time delay τ .

photon at D2. P1,2(τ ) is called the fourth-order interferogram
because it depends on the fourth power of the optical field.

Interference can be viewed as the consequence of the
indistinguishability of possible experimental outcomes. In the
one-photon Michelson interferometer, a photon can “choose”
between two paths to travel through the interferometer
[Fig. 4(a)]. If the experiment is not capable of determining
which path is taken by the photon, then the two possibilities
interfere. On the other hand, if it is possible to tell which path
was taken, then there is no interference. In the latter case, the
probability of the outcome is determined by the classical sum
of probabilities.

In the two-photon Michelson interferometer, there are four
possibilities for a pair of photons to travel through the interfer-
ometer. Both photons can be transmitted, both can be reflected,
or one can be transmitted or reflected while the other is
reflected or transmitted [Fig. 4(b)]. The indistinguishability of
the four possibilities produces interference in the coincidence
counts. However, the photons do not interfere with each other;
the pair of photons interferes with the pair itself [13]. The
interference pattern P1,2(τ ) depends on the correlation between

(ii)

(i) (i)

(iv)

(ii)

(iii)

(b)(a)

FIG. 4. (Color online) Interference of different photon paths in
a (a) one-photon and (b) two-photon Michelson interferometer. In
(a), a photon can travel along two different paths (i) and (ii). In (b),
a pair of photons can travel along four different paths. Interference
in coincidence counting occurs because of the indistinguishability of
the different paths.
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the two photons. If the two photons are independent, then
P1,2(τ ) is the product of two second-order interferograms,
P1,2(τ ) = P1(τ )P2(τ ). On the other hand, if the photon pair is in
an entangled state, then the interference pattern depends on the
joint spectral density of the two-photon state. Thus the degree
of entanglement γ can be extracted from the interferogram.

Let us review the one-photon Michelson interferometer
from a quantum mechanical perspective. The quantum state
of a single-photon wave packet is given by Eq. (1). A photon
in state |ω〉 enters the beam splitter through input port A
[Fig. 3(a)] and after it passes through the beam splitter its
state becomes [24]

|ω〉 = r|ω〉d + t |ω〉c, (10)

where d and c refer to the output ports D and C, respectively.
The constants r and t are the reflection and transmission
coefficients, respectively. |ω〉d evolves along path 1 and
acquires a phase exp(iωt1). After exiting the beam splitter
through output port B, it becomes |ω〉d = t exp(iωt1)|ω〉b. In
the same way, |ω〉c acquires a phase exp(iωt2) and at the
output port B becomes |ω〉c = r exp(iωt2)|ω〉b. By substituting
|ω〉d and |ω〉c into Eq. (10), we obtain |ω〉 = rt[exp(iωt1) +
exp(iωt2)]|ω〉b. The single-photon wave-packet state defined
by Eq. (1) now becomes

|1〉 ∝
∫

dω φ(ω)(1 + eiωτ )|ω〉, (11)

where τ = t2 − t1. For simplicity, we discarded the label b.
Using the fact that �(ω) = |φ(ω)|2 is normalized and has a
center angular frequency ω allows us to calculate the second-
order interferogram P(τ ) = ∫

dω′|〈ω′|1〉|2 as

P(τ ) ∝ 1 + �(τ ) cos(ωτ ). (12)

The function �(τ ) = ∫
dω′�(ω′ + ω) cos(ω′τ ) corresponds to

the Fourier transform of the spectral density.
The interferogram features two contributions: a dc term

and an interference term. The interference term produces
oscillations (fringes) with frequency ω and an amplitude
modulation �(τ ). Practically, we can relate τ to the path-length
difference x = 2(l2 − l1) through τ = x/c, where l1 and l2
are the lengths of the interferometer arms and c is the
speed of light. � defines the coherence length Lc through
�(Lc) = 1

2�max, that is, Lc is the half width at half maximum.
Lc depends on the shape of �(ω) and is related to a spectral
bandwidth, �ω ∼ c/Lc. Experimentally, �(x) is referred to as
the visibility,

V = Imax − Imin

Imax + Imin
, (13)

with Imax and Imin being the maximum and minimum intensi-
ties of the fringes, respectively.

We now turn to the description of the two-photon Michelson
interferometer. The beam splitter acts separately on each
monochromatic state |ω1〉 and |ω2〉. Thus, we can use the
previous result |ω〉 → rt[exp(iωt1) + exp(iωt2)]|ω〉 to obtain
the transformed two-photon state defined in Eq. (2) as

|1,1〉∝
∫∫

dω1dω2 φ(ω1,ω2)(1 + eiω1τ )(1 + eiω2τ )|ω1〉|ω2〉.
(14)

The corresponding fourth-order interferogram is P1,2(τ ) =∫∫
dω′

1dω′
2|〈ω′

1,ω
′
2|1,1〉|2. The second beam splitter does not

affect the interference pattern; it only reduces the intensity of
the coincidences by a factor of 1/2. For the special case where
φ(ω1,ω2) is separable, that is, �(ω1,ω2) = �(ω1)�(ω2),
P1,2(τ ) can be written as the product of two second-order
interferograms,

P1,2(τ ) ∝ [1 + �1(τ ) cos(ω1τ )][1 + �2(τ ) cos(ω2τ )], (15)

where �1(τ ) and �2(τ ) are the Fourier transforms of �1(ω1)
and �2(ω2), respectively. This separable state can be under-
stood in terms of statistical independence. The probability of
detecting photon 1 and photon 2 is P1 ∩ P2 = P1P2, where
P1 and P2 are the probabilities of detecting photon 1 and
photon 2, respectively. In this case, P1 = 1 + �1(τ ) cos(ω1τ )
and P2 = 1 + �2(τ ) cos(ω2τ ). If φ(ω1,ω2) cannot be written as
a product of independent functions of ω1 and ω2, then the state
|1,1〉 is entangled and P1,2 cannot be factored into P1 and P2.

The interference pattern of such an entangled two-photon
state depends on the particular shape of the joint spectral
density. Now, for the case of down-converted photons, we
use the initial state given in Eq. (8) to find that

P1,2(τ ) ∝
∫∫

dωsdωp�(ωs,ωp − ωs)[1 + cos(ωsτ )]

× [1 + cos(ωp − ωs)τ ]. (16)

As discussed in the previous section, we can approximate
�(ωs,ωp − ωs) ≈ P (ωp)F (ωs) if H ≈ 1 in the spectral region
defined by the filters. Using this approximation, the integration
of Eq. (16) is straightforward and the fourth-order interfero-
gram becomes

P1,2(τ ) ∝ 1 + 1
2�p(τ )�F (2τ ) + [�p(τ ) + 1]�F (τ ) cos(ω0τ )

+ 1
2�p(τ ) cos(2ω0τ ), (17)

where �p(τ ) = ∫
dωpP (ωp + ωp) cos(ωpτ ) and �F (τ ) =∫

dωsF (ωs + ω0) cos(ωsτ ). ωp is the center angular frequency
of the pump photons and the filters are selected such that their
central frequencies match the center angular frequency of the
down-converted photons, that is, ωF = ω0 = ωp/2.

Equation (17) is the main result of this paper. It contains the
experimental elements that characterize the complete fourth-
order interferogram. The dc term originates from all of the
possible distinguishable paths. The second term corresponds
to the interference of two identical monochromatic modes.
This term is equivalent to the Hong-Ou-Mandel (HOM) effect
[17,25]. The third term accounts for the interference of two
photons going through different arms [cases iii and iv in
Fig. 4(b)]. The last term originates from two photons traveling
along the same path [cases i and ii in Fig. 4(b)].

We can extract the envelope functions �p and �F by
Fourier transforming Eq. (17). The first two terms, the dc term
and 1

2�p(τ )�F (2τ ), are centered at the zero frequency in the
Fourier plane P̃1,2(� ) of Eq. (17). The third term is centered
at � = ω0 and the fourth term is centered at � = 2ω0. We
can Fourier transform P1,2(τ ) and filter the elements centered
at � = 2ω0 to obtain �p(τ ). Then, we can filter the elements
around � = 0 to obtain �F (τ ). With this information, we can
estimate the degree of entanglement γ = �ωF /�ωp.

023820-5



DORILIAN LOPEZ-MAGO AND LUKAS NOVOTNY PHYSICAL REVIEW A 86, 023820 (2012)

IV. EXPERIMENTAL RESULTS

To experimentally confirm Eq. (17), we measured the
fourth-order interferogram with two different pairs of filters.
Our experiments used a 100 mW diode laser with nominal
wavelength of 407 nm and coherence length of 200 μm.
The laser pumps a β-barium borate (BBO) nonlinear crystal
whose optical axis is oriented at 3.6◦ with respect to the
propagation direction of the laser. This configuration produces
type-I, collinearly propagating, down-converted photon pairs
with degenerate center wavelengths of 814 nm [29]. After the
crystal, the pump laser is suppressed with a combination of
a polarizing beam splitter and a longpass filter. The down-
converted photons are sent into a Michelson interferometer
and the output is analyzed by means of coincidence detection
(Fig. 5).

We adjust the path-length difference between the inter-
ferometer arms to zero by using a white-light source with
a coherence length of 50 μm. The path length of one of
the interferometer arms can be adjusted by translating the
end mirror with a piezo motor. The latter has a step size
of 20 nm. In the experiment, we synchronize the translation
of the mirror with the acquisition of photon coincidences.
Our coincidence-counting procedure has a time-bin resolution
of 4 ps. An electronic delay of 100 ns has been introduced
in one of the detection channels in order to shift the center
position of the coincidences peak. For all measurements, we
used an acquisition time of T = 10 seconds and counted all
coincidences in a time window τ = 3 ns. Background counts
were subtracted using the relation ABτ/T , where A and B are
the single-photon counts of detector A and B, and τ and T are
the time window and the acquisition time, respectively.

In our theoretical calculations, we assumed that the spec-
trum of the pump laser is Gaussian with a central wavelength of
407 nm and a FWHM of 0.36 nm, which produces a coherence
length Lp ≈ 200 μm, in agreement with the specifications
of the laser. The bandwidth of the down-converted photons
is limited by bandpass filters that are placed in front of
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APD

APD

Stop

Coincidences

COINCIDENCE DETECTOR

MICHELSON INTERFEROMETER

BPF

BPF

Vertical polarization

Horizontal polarization

FIG. 5. (Color online) Experimental setup. BBO, β-barium bo-
rate crystal; PBS, polarizing beam splitter; LPF, longpass filters; BS,
beam splitter; M, mirror; APD, avalanche photodiode; BPF, bandpass
filters.
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FIG. 6. (Color online) Measurements of the fourth-order interfer-
ogram of down-converted photons using 10 nm (FWHM) bandpass
filters. The filters produce a coherence length LF = 55 μm. The
periodicity of the fringes is 720 and 333 nm when the path-length
difference is 0 and 200 μm, respectively. The theoretical calculations
are shown in (b). The gray shade represents fringes oscillating at
λ0 = 814 nm, whereas the dark shade represents fringes oscillating
at λ0/2. The coherence length of the pump photons is Lp = 200 μm.

the detectors. For the first experiment, the filters have a
bandwidth of 10 nm centered at 810 nm (the central wavelength
is not exactly at the degenerate wavelength of 814 nm;
however, because �ωF � �ωp, we can still assume that the
phase-matching function H ≈ 1 in the region defined by the
filters). For the second experiment, we use bandpass filters
with bandwidths of about 200 nm. In this case, the factor γ

increases, which is clearly noticeable in the interferogram.
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FIG. 7. (Color online) Measurements of the fourth-order inter-
ferogram of down-converted photons using 200 nm bandpass filters
which produces a coherence length of 3.3 μm. (a) Measurements and
(b) theoretical calculations. Compared to the first experiment, the
degree of entanglement in the second experiment is higher.
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Figure 6(a) shows the measurements of the fourth-order
interferogram using the 10 nm filters. The filters give rise to a
coherence length of LF = 55 μm. The inset shows a close-up
of the fringes in two different regions. In the central region,
the oscillations feature a wavelength of 720 nm (visibility
of 0.99). On the other hand, for a path-length difference of
200 μm, the period reduces to 333 nm (visibility of 0.11). The
corresponding theoretical calculations based on Eq. (17) are
shown in Fig. 6(b). The theory yields an oscillation frequency
of ω0 for short path-length differences (indicated by the
gray shade) and 2ω0 for path-length differences larger than
the coherence length (indicated by the dark shade). Slight
differences between theory and experiment are due to the
hysteresis and finite step size of the piezo motor used for
mirror translation (the average step size is 20 nm, which
generates a path-length difference of 40 nm for each step).
Nevertheless, there is good agreement between theory and the
experiment.

Figure 7(a) shows the experimental fourth-order interfer-
ogram using bandpass filters with a 200 nm bandwidth. The
filters produce a coherence length of roughly LF = 3.3 μm.
In the central region, the fringes have a period of 563 nm and
a visibility of 0.99. When the path-length difference becomes
equal to 60 μm, the wavelength reduces to 141 nm and the
visibility reduces to 0.19. The theoretical calculations are
shown in Fig. 7(b). The slight frequency mismatch is again
due to the precision of the piezo motor. Also, background
noise from the pump laser slightly reduces the visibility of
the experimentally recorded fringes. Overall, there is good
agreement between theory and experiment. Clearly, the degree
of entanglement in this experiment is stronger than in the
previous one. Since the frequency bandwidth of the filters
is increased, the value of γ increases compared to the first
experiment (remember that the frequency bandwidth �ωF ∝
�λF , where �λF is the wavelength bandwidth). In other

words, the area of the joint spectral density selected with the
200 nm bandpass filters is more asymmetric (cf. Fig. 1) than
the joint spectral density recorded with 10 nm bandpass filters.

Now that we have demonstrated the validity of Eq. (17),
we proceed to characterize the degree of entanglement. We
identify three scenarios:

(a) Completely entangled state. This case corresponds to
γ → ∞, that is, the coherence length LF of the down-
converted photons is LF  Lp [Fig. 8(a)].

(b) Partially entangled state. This is the intermediate
case when LF ∼ Lp. It corresponds to a superposition of a
completely entangled state and a separable state [Fig. 8(b)].

(c) Separable state. In this case, γ → 0, which happens
when LF � Lp [Fig. 8(c)].

V. CONCLUSIONS AND OUTLOOK

We have analyzed the two-photon Michelson interferometer
with entangled down-converted photons. The fourth-order
interferogram is given in terms of the pump spectral density
and bandwidth of the bandpass filters [Eq. (17)]. We showed
that the degree of entanglement increases with the ratio γ =
�ωF /�ωP , where �ωP and �ωF are the spectral bandwidths
of the pump laser and bandpass filters, respectively. We exper-
imentally measured the complete fourth-order interferogram
and the results agree with the theoretical predictions. The
second term in Eq. (17) can be used for QOCT [30,31]. The
standard implementation of QOCT uses a HOM interferometer
[17]. This interferometer uses degenerate, noncollinear, type-I
down-converted photons. The down-converted photons enter
the two input ports of a beam splitter and the coincidences
are detected at the two output ports. The resulting fourth-order
interferogram contains a dip at τ = 0. The dip occurs because
of the photon bunching effect, which means that the two
photons go together to either output ports of the beam splitter.

−2 −1 0 1 2
0.1

0.25

0.4

Path-length difference / (LF+Lp)

LF<<Lp(a)

−2 −1 0 1 2
0

0.25

1
LF=Lp/4

Path-length difference / (LF+Lp)

(b)

−2 −1 0 1 2
0

0.25

0.5

Path-length difference / (LF+Lp)

(c) LF>>Lp

N
or

m
. c

oi
nc

. r
at

e 
 (

s-1
)

N
or

m
. c

oi
nc

. r
at

e 
 (

s-1
)

N
or

m
. c

oi
nc

. r
at

e 
 (

s-1
)

FIG. 8. Interference patterns for different degrees of entanglement. The gray shades indicate fringes with frequency ω0 and the dark shades
indicate fringes with frequency 2ω0. Lp and LF are the coherence length of the pump and the down-converted photons, respectively. (a)
Complete entangled state, (b) partially entangled state, and (c) separable state.
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The second term in Eq. (17) is exactly the bunching effect.
Therefore, this bunching term presents all of the properties
that are required for QOCT, that is, dispersion cancellation
and enhancement of resolution by a factor of two. Clearly,
from Eq. (17), the bunching term is spectrally separated from
the other contributions. We can filter out the other elements by
Fourier processing and isolate the bunching term.
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