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Shaped nondiffracting beams
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We demonstrate that nondiffracting beams can be generated with an arbitrary transverse shape. In particu-
lar, we show that the azimuthal complex modulation of the angular spectra of Helmholtz–Gauss wave fields
constitutes a degree of freedom sufficient to tailor nondiffracting beams with an intensity pattern of choice.
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Nondiffracting beams (NDBs) are unique in that they
propagate while preserving their integrity [1], an
ability that has resulted in their widespread use in
applied science. The best known example of this class
of wave fields, the Bessel beam, has been successfully
used in optical manipulation [2], biophotonics [3], op-
tical interconnects [4,5], and optical coherence to-
mography [6], where it is particularly advantageous
in comparison to a conventional Gaussian beam ow-
ing to its comparatively longer invariance length.

In this Letter, we show that NDBs with a trans-
verse intensity pattern of choice can be produced. In
particular, we prospect the complex space of the an-
gular spectrum in search for a two-dimensional (2D)
complex modulation that corresponds to a beam with
the desired transverse intensity profile and at the
same time, is an NDB. The results shown here
broaden the applications of NDBs by providing with
a means of tailoring their transverse shape.

NDBs have a transverse structure independent of
the longitudinal coordinate. They can be regarded as
the outcome of the interference of the set of plane
waves with constant inclination �0 in reciprocal
space, as shown in Fig. 1. The ends of the constitut-
ing wave vectors lie on an infinitely thin ring of ra-
dius kt that corresponds to the transverse spatial fre-
quency,

kt =
2�

�
sin�0. �1�

As a consequence of their wave vector distribution,
the central portion of the transverse intensity of
NDBs remains invariant along an extended propaga-
tion distance zmax, which can be larger than the Ray-
leigh range zR of a Gaussian beam of comparable
transverse extent. A physically consistent represen-
tation of NDBs is provided by the formalism of
Helmholtz–Gauss (HzG) beams [7]. The functional
form of HzG beams,

U�r� = exp�− i
kt
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incorporates the product of the Gaussian envelope,
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with waist size w0, and the transverse shape of a
NDB W�rt�. Here, �=1− iz /zR, zR=kw0

2 /2, and rt is
the transverse coordinate. The intensity of an HzG
beam does not vary significantly along a length zmax
=zR /� measured from its waist, where �= 1

2kt�0 is the
ratio of the inclination angle �0 and the spread of the
Gaussian function. The angular spectrum of HzG
beams, given by the 2D Fourier transform [8]
F�U�r��=Ũ�u ,v ;z�, is characterized by a support
�Ũ�u ,v ;z�� of annular shape in reciprocal space, as
shown in Fig. 1(b). The functional form of the spec-
trum is given by
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Fig. 1. (a) Wave-vector distribution of NDBs. In reciprocal
space, the wave vectors lie on the surface of a cone with
semiangle �0 and end in a circular ring with radius kt. (b)
Typical power spectrum of an HzG beam. Notice the
annular-shaped support and associated radial frequency
content.
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Although the specific shape of the support of NDBs
is responsible for their extended propagation invari-
ance length, it is the complex angular modulation of
their angular spectra that determines the specific
transverse profile of the beams. A random modula-
tion of the spectrum in the azimuthal coordinate, for
example, results in a beam with random, invariant
transverse intensity and extended propagation dis-
tance [9]. The modulation of the complex amplitude
of the angular spectrum therefore represents a de-
gree of freedom that can be used to sculpt a desired
transverse shape onto an NDB. Finding the corre-
sponding complex modulation allows the generation
of NDBs with the intensity profile of choice.

In our experiments, we have chosen an arbitrary
intensity pattern I0�rt�=U0�rt�2 and have searched
for a solution for the corresponding complex modula-
tion in Fourier space with the constraint of an annu-
lar support, which is the defining characteristic of all
NDBs. In particular, we probe the space of angular
spectra with a modified adaptive additive phase algo-
rithm [10] that incorporates the functional form of
the support as a spectral constraint. We have en-
coded the complex modulation in a phase-only
computer-generated hologram (CGH) by means of a
spatial light modulator (SLM) addressable with a su-
per video graphics array (SVGA) signal with a reso-
lution of 800�600 pixels. Figures 2(a) and 2(b) show
the desired intensity profile I0�rt� and the numerical

Fig. 2. (Color online) (a) The desired transverse intensity,
I0�rt� and (b) its simulated intensity profile (log scale) from
the numerical reconstruction of the CGH with a Fourier
lens of focal length f=0.4 m at z= f. (c) Normalized cross-
correlation coefficient for different beams and the desired
transverse intensity as a function of propagation distance.
The red squares and blue circles correspond to relative
space-bandwidth products 	1=0.34 and 	2=0.78, respec-
tively. The black line represents the case of no frequency
constraints and the dashed green line corresponds to
m=0.75 for reference. Note that the ranges of z / f for which
m
0.75 in each case are roughly four �zmax=0.26 m� and
three times �zmax=0.18 m� larger than for a beam without

the support constraints, respectively.
reconstruction of the CGH, IR�rt�, respectively. Typi-
cal values for the signal-to-noise ratio are +11 dB. We
use a Gaussian beam to illuminate the CGH; the re-
sidual available bandwidth of the SLM is filled with
an encoded checkerboard pattern to avoid a zeroth-
order contribution at the Fourier plane. In an appli-
cation, where optical power is limited, illuminating
the CGH with an annular beam shaped with an axi-
con, for example, yields a higher insertion efficiency
of the CGH.

Figure 2(c) shows the normalized cross-correlation
m of I0�rt� and IR�rt� as a function of the longitudinal
distance. The squares and circles correspond to two
different instances of spectra with relative space-
bandwidth products 	1 and 	2, respectively, while the
value for a CGH with no spatial constraints is given
by the continuous black line for reference. As ex-
pected, m is maximum at the Fourier plane z= f in all
cases. However, for NDBs, m has a higher value for
longer distances, an evidence of their extended focal
depths. While using a narrower spectrum allows for a
longer depth of focus, the reduced set of spatial fre-
quencies that can be encoded results in comparably
lower values of m at the focal plane.

Constraining the support constitutes a bandpass
filter operation, which selectively eliminates of spa-
tial frequencies and in turn yields lower values of m.
Such frequency discrimination leads in turn to ex-
tended propagation distances at the cost of signifi-
cant bandwidth loss. The annular bounds of the an-
gular spectrum of NDBs effectively reduce the space-
bandwidth product of the wave field, a situation that
is desirable where a reduction of high-frequency
noise is an advantage and sacrificial bandwidth is
available. For instance, the use of spectral con-
straints has been previously explored in connection
with the performance of coherent light diffusers fea-
turing reduced speckle [11]. In this case, the average
size of the speckles can be reportedly controlled by
modifying the values of the frequency constraints.

Figure 3(a) corresponds to the beam transverse in-
tensity profile at the Fourier plane and at a distance
z=zmax (insert), defined as the axial point where the
value of m drops below 0.75. Notice that the beam

Fig. 3. (Color online) (a) Numerical simulation of the
beam profile I0�rt� at z= f and at z=zmax and (b) experimen-
tal beam profile IR�rt� reconstructed from the CGH with
f=0.40 m. In both cases 	=0.34. Gaussian spread takes
over after the beams propagate for a distance zmax�zR, as

expected from an HzG beam.
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preserves its general shape until Gaussian spread
takes over after z=zmax. The experimental recon-
struction using the same parameters is shown in Fig.
3(b), where the spread predicted by Fig. 3(a) is evi-
dent. Noticeably, a beam with a higher space-
bandwidth product yields a higher fidelity in virtue of
the inclusion of a broader range of spatial frequen-
cies. However, its intensity profile degrades signifi-
cantly after a shorter propagation distance in com-
parison with its band-limited counterpart, as shown
in Fig. 2(c).

In conclusion, we have produced NDBs with arbi-
trary intensity profiles by calculating their corre-
sponding complex spectra with the support con-
straints of HzG beams. Moreover, we have
experimentally verified the propagation properties of
the produced beams throughout an extended invari-
ance distance, and we have quantitatively assessed
the fidelity of the beams compared to the intended in-
tensity distribution for different sets of constraints.
Our results open new avenues in the use of NDBs by
introducing a means to control their transverse pro-
file and are currently being extended to the recently
demonstrated accelerating beams [12,13].

The authors wish to acknowledge fruitful discus-
sions with J. C. Gutiérrez-Vega and S. Lopez-Aguayo,
from Tecnológico de Monterrey, Mexico and with F.
M. Dickey from FMD Consulting, LLC.
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