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Stable solitons in elliptical photonic lattices
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We introduce the basic properties of solitons in elliptical photonic lattices induced optically by a superposi-
tion of Mathieu beams. Owing to the modulation of the intensity along its elliptical rings, these lattices allow
novel dynamics of propagation, being possible, for the first time to our knowledge, to propagate solitons in an
elliptic motion with varying rotation rate. © 2008 Optical Society of America
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The combination of diffractive and nonlinear effects
with the depth of the transverse refractive index
modulation in photonic lattices opens the possibility
to produce spatial localized states of light—or
solitons—in either weak or strong coupling regimes
[1–5]. This tunable discreteness offers a rich variety
of phenomena that are not possible to observe in ho-
mogeneous media. To achieve a maximum control of
light in these media, the lattice itself must minimize
the diffraction effects, and therefore the nondiffract-
ing beams [6] are appropriate to induce the photonic
lattice. The simplest case of a nondiffracting beam
are the plane waves, which are the fundamental so-
lution to the Helmholtz equation in Cartesian coordi-
nates. Over the past few years, more complex nondif-
fracting beams solutions, such as Bessel, Mathieu,
and parabolic beams in circular, elliptical, and para-
bolic coordinate systems, respectively, have been ana-
lyzed both in linear [6–8] and nonlinear [9–12] mate-
rials. The properties of the solitons supported by the
optical lattice change substantially as a result of the
topology and symmetries of the nondiffracting beam
employed. In a past work, the basic properties and
stability of two-dimensional solitons in optical lat-
tices induced by the pure even and odd Mathieu
beams were addressed [11].

In this Letter we introduce a new topology of opti-
cal lattice: the elliptical photonic lattice (EPL). Such
a lattice is induced optically by a linear superposition
of Mathieu nondiffracting beams [13]. We reveal that
single solitons can be set into elliptic rotation with
varying angular velocity by adjusting the depth and
ellipticity of the lattice and the initial power and
transverse momentum of the solitons. Remarkably,
the rotating solitons can propagate without power ra-
diation for several tens of diffraction lengths and ro-
tations. To the best of our knowledge, the EPL is the
first lattice where all these properties are present at
the same time. This Letter consolidates and extends
previous studies on Bessel and lowest-order Mathieu
lattices [9,11].

We begin the analysis by writing the nonlinear
propagation equation for the complex field amplitude
�, traveling along the z axis of a self-focusing satu-
rable medium whose refractive index varies trans-
versely as ��r�
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where the longitudinal z and the transverse coordi-
nates r= �x ,y� have been normalized to the diffraction
length and the beam width, respectively; p is the lat-
tice depth; and s is the saturation parameter [14]. We
assume that the EPL is described by the transverse
intensity ��r�����r��2 of a nondiffracting helical
Mathieu beam [7,13], namely,
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where cem and sem are the mth-order even and odd
Mathieu functions, C��� and S��� are normalization
constants to ensure that the even and odd compo-
nents carry the same power, �� �0,�� is the ellipticity
parameter, and kt is the transverse wave vector. As
shown in Fig. 1 , the transverse index distribution of
the EPL is characterized by a set of confocal elliptic
rings whose ellipticity is controlled by �. When �→0
the EPL reduces to a Bessel lattice characterized by a
set of circular rings of constant intensity [9]. As � in-
creases, the rings become more and more elliptical
and, after a critical value of �, they are broken. When
�→�, the EPL tends smoothly to a discrete rectangu-

Fig. 1. (Color online) Transverse profile of third-order
EPLs with kt=2 for (a) �=0, (b) �=1, and (c) �=2. Profiles of
centered solitons supported by a third-order EPL with s
=0.05, �=1, kt=2, and p=2 for (d) 	=0.8, (e) 	=15, and (f)

	=20.
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lar lattice characterized by cosine functions. Note
that, unlike the Bessel lattices, the intensity of the
elliptic rings in an EPL is not constant; actually the
maximum and minimum intensities correspond to
the major and minor axes, respectively.

First we address the properties of the stationary
solitons supported by the central guiding core of the
EPL. We look for solutions of Eq. (1) in the form
��r ,z�=U�r�exp�i	z�, where U�r� is a real function
and 	 is the longitudinal propagation constant. The
soliton profiles depicted in Figs. 1(d)–1(f) were ob-
tained by solving Eq. (1) with the Petviashvili relax-
ation method [15] starting from a Gaussian ansatz
centered at the origin r=0. For small values of 	, the
solitons have a narrow bell-shaped pattern and con-
centrate mostly within the elliptic dark spot of the
lattice [Fig. 1(d)]. As 	 increases, the field is wider
and covers the first ring producing an elliptic ring-
shaped stable soliton [Fig. 1(e)]. For higher values of
	, the symmetry breaking instability [16] is devel-
oped, and the soliton concentrates on one of the
maxima of the first elliptic ring [Fig. 1(f)].

Stationary solitons can also be trapped in the outer
rings of the EPL. In Fig. 2 we show the relation be-
tween the soliton power P=
�U�r��2dxdy and the
propagation constant 	 for two different points of lo-
calization in either the semi-major (x=4.05, y=0) or
the semi-minor (x=0, y=3.9) axis of the second ring of
the EPL. For both cases, we found that to obtain sta-
tionary solitons located on the second ring, the Petvi-
ashvili relaxation method achieves convergence just
when 	 is restricted to a finite interval of values that
in fact reduce as the lattice depth p increases. Apply-
ing the Vakhitov–Kolokolov stability criterion [17],
namely, dP /d	
0, we predict that all the solitons
displayed in Fig. 2 should be stable. We confirmed
this prediction by propagating numerous soliton pro-
files with a split step-Fourier method along hundreds
of diffraction lengths.

The most important example of localized self-
trapped light modes supported by EPLs is given by
stable rotating solitons trapped in the rings of the he-
lical Mathieu lattice. To induce them, we located the
centroid of the Gaussian ansatz at the maximum of
the second elliptic ring and induce the rotational mo-
tion by imprinting an initial transverse momentum

Fig. 2. (Color online) Power of the soliton and their local-
ization into the lattice (inset) versus the propagation con-
stant for different values of lattice depth p for modes local-
ized over (a) the semi-major axis and (b) the semi-minor

axis of the second elliptic ring.
g� directed along the tangent of the ring; this can be
done by imposing a phase twist exp�ig�y� on the sta-
tionary solutions obtanied previously in the semi-
major axis of the second ring. For small values of g�

the soliton is still strongly attracted by the local
maximum of the elliptic ring and thus oscillates back
and forth across this point following an oscillatory
trajectory on propagation as shown in Figs. 3(a) and
3(g), where in this case g�=0.314.

The rotational motion of the soliton along the ellip-
tic rings is induced by increasing g� until a critical
value, grot. In this case, the soliton gets away from
the intensity maximum and undergoes elliptic rota-
tions on propagation as shown in Figs. 3(b) and 3(g),
where g�=0.628. The dynamics of the rotating soli-
tons arise from the delicate interplay between the at-
tracting force of the particular ring and the initial
transverse momentum and power imprinted to the
solitons. We performed an extensive set of simula-
tions under different initial conditions and perturba-
tions. To quantify the radiation power, at every
propagation step, we calculated the power contained
in a circle centered on the soliton whose radius ini-
tially encloses 99% of the soliton power at the plane
z=0. Remarkably, for stable solitons, the enclosed
power oscillates but remains conserved. We thus cor-

Fig. 3. (Color online) Dynamics of soliton propagation in
the EPL with m=3 and �=1. In all cases s=0.05, p=4, and
	=10. (a) Oscillatory motion. (b) Rotational motion. (c)
Nontrapped motion. The loss of the power for the soliton
propagation for each of these cases is shown in (d), (e), and
(f), respectively. (g) Propagation trajectories of the soliton
in the EPL for cases (a) and (b). In this example, grot

=0.513 and gout=1.53.



December 1, 2008 / Vol. 33, No. 23 / OPTICS LETTERS 2787
roborated that rotating solitons can survive for sev-
eral tens of elliptic rotations, in spite of the varying
modulation of the refractive index in the EPL. If the
initial momentum g� exceeds a critical value,
namely, gout, the soliton leaves the ring where it was
initially launched and propagates across the lattice
radiating power until it decays. Figure 3 shows the
soliton dynamics and the soliton power for the three
cases discussed.

Since the refraction index along the rings of the
EPL is not azimuthally symmetric, solitons trapped
within the elliptic rings increase (decrease) their an-
gular speed as they approach intensity maxima
(minima). In Fig. 4, we show the varying rotation
rate of the solitons trapped in the EPL and the prac-
tically constant rate of the solitons in the Bessel lat-
tice. It is interesting to note that similar elliptic tra-
jectories with varying angular speed have been
reported in [13] using trapped spherical polystyrene
particles suspended in D2O. Even though the trap-
ping mechanisms are fundamentally different, in
both cases the varying velocity of the trapped par-
ticles and solitons is due to the particular modulation
of the helical Mathieu beams.

Finally, we remark that a rich variety of interact-
ing scenarios for a collection of stable solitons under-
going elliptic rotation can be obtained, thus featuring
unique types of interactions. For example, collisions
between solitons launched at different points of the
elliptic ring, with identical initial transverse speed
and rotating in the same direction, are possible ow-
ing to the angular modulation of the ring. These in-
teractions depend heavily on the initial phase differ-
ence between each soliton profile. The authors are
currently working on a manuscript to show all these
results.

In conclusion, we showed that the EPL, with sev-
eral confocal elliptic rings, supports soliton propaga-
tions that are stable in a region of their existence do-
main by properly adjusting the lattice depth, the

Fig. 4. (Color online) (a) Transverse rotation rate �S
= ��r� /�z	 of the solitons trapped in an EPL and a Bessel
lattice. (b) Enclosed power for soliton trapped in the EPL

and the Bessel lattice.
ellipticity of the EPL, and the initial power and mo-
mentum of the launched fields. Upon propagation,
the trajectories of the stable solitons can be station-
ary, oscillatory, or rotating. Accurate numerical simu-
lations have demonstrated that the soliton can sur-
vive, without power radiation, for several hundreds
of diffraction lengths and rotations. The possibility of
excitation of rotational motion of solitons inside EPL
might find direct applications in future soliton cir-
cuits. The first controlled soliton rotation in circular
ring-shaped photonic lattices by optical induction
was demonstrated in [18], opening the possibility to
observe experimentally the theoretical results pre-
sented in this Letter.
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