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Helmholtz–Gauss waves
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A detailed study of the propagation of an arbitrary nondiffracting beam whose disturbance in the plane z
5 0 is modulated by a Gaussian envelope is presented. We call such a field a Helmholtz–Gauss (HzG) beam.
A simple closed-form expression for the paraxial propagation of the HzG beams is written as the product of
three factors: a complex amplitude depending on the z coordinate only, a Gaussian beam, and a complex
scaled version of the transverse shape of the nondiffracting beam. The general expression for the angular
spectrum of the HzG beams is also derived. We introduce for the first time closed-form expressions for the
Mathieu–Gauss beams in elliptic coordinates and for the parabolic Gauss beams in parabolic coordinates.
The properties of the considered beams are studied both analytically and numerically. © 2005 Optical Society
of America
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1. INTRODUCTION
Nondiffracting beams have attracted attention ever since
Durnin et al.1,2 first reported the generation of the Bessel
beams in 1987. In their original papers, Bessel beams
were obtained as solutions to the homogeneous scalar
wave equation expressed in circular cylindrical coordi-
nates. Thereafter, several exact nondiffracting solutions
of the wave equation have also been reported, for instance
Mathieu beams in elliptic coordinates3–5 and parabolic
beams in parabolic coordinates.6 The transverse inten-
sity distribution of these ideal nondiffracting beams re-
mains unchanged in free-space propagation.

Ideal nondiffracting beams have an infinite extent and
energy, and thus they are not physically realizable. In
view of this, some papers have been devoted to describing
modified versions of Bessel beams, which carry finite en-
ergy and may be said to be nearly nondiffracting because
they can propagate over a large range without significant
divergence. In particular, Gori et al.7 introduced in 1987
the Bessel–Gauss (BG) beams, i.e., Bessel beams
apodized by a Gaussian transmittance, which carry a fi-
nite power and can be realized experimentally to a very
good approximation.

The original BG beams have been generalized in a
number of ways; for instance, Li et al.8 studied the behav-
ior of Bessel beams modulated by flat-topped Gaussian
functions and suggested that beams with different trans-
verse shapes and nondiffractinglike features can be ex-
pressed as a series of conventional BG beams of different
orders. Kiselev9 applied the separation-of-variables
method to find a general expression for describing the
propagation of a Gaussian beam whose amplitude is mul-
tiplied at a given plane by a function that is a solution of
the two-dimensional Helmholtz equation. BG beams are
thus a special case of the Kiselev solutions.

In this paper we present a rigorous and detailed study
of the propagation of an arbitrary nondiffracting beam
whose disturbance in the plane z 5 0 is modulated by a
Gaussian envelope. Because nondiffracting beams are
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solutions of the Helmholtz equation, we call such a field a
Helmholtz–Gauss (HzG) beam. We derive a simple
closed-form expression for the propagation of the HzG
beams that can be written as the product of three factors:
a complex amplitude depending on the z coordinate only, a
Gaussian beam, and a complex scaled version of the
transverse shape of the nondiffracting beam. Unlike
ideal nondiffracting beams, HzG beams carry finite power
and can be realized experimentally to a very good ap-
proximation. BG beams are a special case of HzG beams.

The general expression for the angular spectrum of the
HzG beams is derived, and their properties discussed.
We found that the angular spectrum of the HzG beam is
represented by an annular ring in the frequency space.
While the mean radius of the ring is defined exclusively
by the transverse structure of the ideal nondiffracting
beam, the width of the annulus is specified by the Gauss-
ian envelope only.

We introduce for the first time closed-form expressions
for the Mathieu–Gauss (MG) beams in elliptic coordi-
nates and for the parabolic Gauss (PG) beams in parabolic
coordinates. The behavior of the considered beams on
propagation is studied both analytically and numerically.
This work extends and consolidates the previous descrip-
tions and generalizations of nondiffracting optical beams.

2. HELMHOLTZ–GAUSS BEAM
Let us suppose that a monochromatic wave U(r) with
time dependence exp(2ivt) has a disturbance across the
plane z 5 0 given by

U0~rt! 5 exp~2r2/w0
2!W~rt ; kt!, (1)

where rt 5 (x, y) 5 (r, f ) denotes the transverse coordi-
nates, W(rt ; kt) is the transverse pattern of an ideal non-
diffracting beam W(rt ; kt)exp(ikzz), and w0 is the waist
size of a Gaussian envelope. The transverse (kt) and lon-
gitudinal (kz) components of the wave vector k satisfy the
relation k2 5 kt

2 1 kz
2.
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The transverse distribution W(rt ; kt) of the ideal non-
diffracting beam fulfills the two-dimensional Helmholtz
equation

S ]2

]x2
1

]2

]y2
1 kt

2D W~rt ; kt! 5 0 (2)

and can be expressed as a superposition of plane waves
whose transverse wave numbers kt are restricted to a
single value, that is,

W~rt ; kt! 5 E
2p

p

A~ w!exp@ikt~x cos w 1 y sin w!#dw,

(3)

where A( w) is the angular spectrum of the ideal nondif-
fracting beam. This angular spectrum is located on a
single ring of radius r 5 kt in the frequency space.

The HzG field U(r) can be determined in terms of its
value U0(rt) at z 5 0. By using the fact that nondiffract-
ing beams can be expanded in terms of plane waves, we
demonstrate in Appendix A that U(r) is given by

U~r! 5 expS 2i
kt

2

2k

z

m
D GB~r!WS x

m
,

y

m
; ktD , (4)

where GB(r) is the fundamental Gaussian beam

GB~r! 5
exp~ikz !

m
expS 2

r2

mw0
2D (5)

and

m 5 m~z ! 5 1 1 iz/zR , (6)

with zR 5 kw0
2/2 being the usual Rayleigh range of a

Gaussian beam.10 Equation (4) is a solution of the homo-
geneous Helmholtz equation under the paraxial regime
throughout the whole space and reduces to Eq. (1) when it
is evaluated in the plane z 5 0. One thus notices that
the propagation of a HzG beam gives rise to distinct lon-
gitudinal amplitude and aspheric phase factors.

While the arguments of the function W at the plane z
5 0 are real, outside this plane they become complex i.e.,
x̄ 5 x/m and ȳ 5 y/m, with the result that the initial
shape defined by W may change its form dramatically on
propagation. It is also worth noting that the function
W( x̄, ȳ; kt) still satisfies the two-dimensional Helmholtz
equation

S ]2

] x̄2
1

]2

] ȳ2
1 kt

2D W~ x̄, ȳ; kt! 5 0 (7)

and admits the following integral representation:

W~ x̄, ȳ; kt! 5 E
2p

p

A~ w!exp@ikt~ x̄ cos w 1 ȳ sin w!#dw.

(8)

The angular spectrum of a HzG beam across a plane
parallel to the (x, y) plane at a distance z from the origin
is given by the two-dimensional Fourier transform

U~u, v; z ! 5
1

2p
EE U~x, y, z !exp~2ixu 2 iyv !dxdy,

(9)
where (u, v) are the Cartesian coordinates in the fre-
quency space and the double integral is carried out over
the whole plane (x, y). By substituting Eq. (4) into Eq.
(9), we show in Appendix B that the spectrum of the HzG
beam is given by

U~u, v; z ! 5 D~z !expS 2
w0

2m

4
r2D WS w0

2

2i
u,

w0
2

2i
v; ktD ,

(10)

where r 5 (u2 1 v2)1/2 and

D~z ! 5
w0

2

2
expS 2

1

4
kt

2w0
2D exp~ikz ! (11)

is a complex amplitude factor that depends on z only.

3. PROPAGATION PROPERTIES OF
HELMHOLTZ–GAUSS BEAMS
We will now discuss the general propagation properties of
the HzG beam and its angular spectrum.

A. Helmholtz–Gauss Beam Behavior
From Eq. (4), it is straightforward to verify that when
w0 → `, the HzG beam becomes

U~r! 5 exp@i~k 2 kt
2/2k !z#W~rt ; kt!, (12)

which is indeed the equation of an ideal nondiffracting
beam with the longitudinal wave vector kz expressed in
the paraxial approximation k 2 kt

2/2k. On the other
hand, from Eq. (8), we see that when kt tends to zero, the
function W becomes a constant and consequently the HzG
beam reduces to a pure Gaussian beam.

Following the physical picture used by Gori et al.7 to
gain a basic understanding of the propagation features of
the BG beams, one may imagine that a HzG beam is
formed as a coherent superposition of fundamental
Gaussian beams that have their waist planes coincident
with the plane z 5 0, whose mean propagation axes lie on
the surface of a cone with a half-aperture angle u0
5 arcsin(kt /k) ' kt /k and whose amplitudes are modu-
lated angularly by the function A( w). The propagation
characteristics are thereby governed by the spreading of
the beam due to the conical propagation and the diffrac-
tion of the constituent Gaussian beams whose diffraction
angle is uG 5 2/kw0 .10

The parameter

g 5
u0

uG
5

1

2
ktw0 (13)

plays an important role in the propagation of the HzG
beams. When g @ 1, a significant superposition of all
the constituent Gaussian beams will survive up to a dis-
tance

zmax 5
w0

sin u0
'

w0k

kt
5

zR

g
. (14)
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This is a conservative estimate because the spot size of
the Gaussian beams actually increases along the propa-
gation axis. For g @ 1 the HzG beam retains the nondif-
fracting propagation properties of the ideal nondiffracting
beam within the range z P @2zmax , zmax#. Outside this
zone, the HzG beam will diverge and acquire wave-front
curvature, forming a ring-shaped far-field pattern with
mean radius z tan u0 , an angular variation given approxi-
mately by A( w), and leaving the central region near the z
axis practically obscure.

The case g ! 1 occurs when l t 5 (2p/kt) @ pw0 ; thus
the outer radial oscillations of the function W at the plane
z 5 0 are strongly damped, leaving only a Gaussian-like
spot that is angularly modulated by the azimuthal depen-
dence of the ideal nondiffracting beam. The case g ; 1
corresponds to the transition zone between the Gaussian-
like behavior (g ! 1) and the nondiffractinglike behavior
(g @ 1).

B. Axial Irradiance Distribution
By setting r 5 0 in Eq. (4), we can obtain the normalized
axial irradiance distribution I(z) 5 uU(0, 0, z)u2/
uW(0, 0)u2 of the HzG beams, namely,

I~ z̄ ! 5
1

1 1 z̄2
expS 2

2g2z̄2

1 1 z̄2D , (15)

where z̄ 5 z/zR is the normalized propagation distance.
Equation (15) can be applied only to beams for which the
field at the origin does not vanish. The irradiance distri-
bution as a function of z is depicted in Fig. 1 for g
5 1,3,...,15. For each curve, the vertical dashed line is
located at the maximum distance zmax 5 (2k/kt

2)g [see Eq.
(14)], for which the axial irradiance assumes the value

I~zmax! 5
g2

1 1 g2
expS 2

2g2

1 1 g2D . (16)

Note that the axial irradiance of the HzG beams is a
monotonically decreasing function of the propagation dis-
tance z, and consequently it does not present axial irradi-
ance oscillations, as occurs for apertured ideal nondif-
fracting beams.1,8

Fig. 1. Normalized axial irradiance distribution of a HzG beam
as a function of z for g 5 1,3,...,15. The vertical dashed lines are
located at the maximum distance zmax 5 zR /g. For numerical
purposes, l 5 632.8 nm and u0 5 0.05°.
C. Angular Spectrum Behavior
The angular spectrum of the HzG beams also exhibits an
interesting dependence on the parameter g. In Appendix
B, we show that the angular spectrum [Eq. (10)] comes
from the azimuthal superposition of waves whose radial
dependence can be written in the form

expS 2
w0

2m

4
r2D expS ktw0

2

2
r D (17)

[see Eq. (B4)]. The amplitude of the last expression is
given by

exp~g2!expF2
1

4
w0

2~r 2 kt!
2G , (18)

which is identified as a Gaussian function whose maxi-
mum is shifted a distance kt from r 5 0 and whose half-
width is 2/w0 . It is clear that for g @ 1 the angular
spectrum of the HzG beam is represented by an annular
ring in the frequency space. The mean radius of the ring
is kt , and consequently it is defined exclusively by the
function W associated with the ideal nondiffracting beam.
On the other hand, the width of the ring is 4/w0 ; it is thus
defined by only the Gaussian envelope. It is instructive
to see that a scaling of the transverse dimensions of the
nondiffracting beam W changes only the middle radius of
the ring, whereas its width remains unchanged.

When w0 → `, the HzG can be approximated by an
ideal nondiffracting beam, expression (18) tends to a delta
function d (r 2 kt), and the angular spectrum becomes a
d-like ring of radius kt over the plane (u, v). On the
other hand, in the case of HzG beams for which the field
at the origin does not vanish, the Gaussian function
exp(2r2/w0

2) becomes a very narrow impulse function at
r 5 0 when w0 → 0, and consequently the HzG beam in
the plane z 5 0 behaves as a bright point source at the
origin, expression (18) tends to a constant, and the power
spectrum is practically independent of the radius r. Fi-
nally, we note from Eq. (10) that the transverse structure
of the power spectrum uU(u, v; z)u2 remains invariant un-
der propagation, i.e., uU(u, v; z)u2 5 uU(u, v; 0)u2.

4. FOUR FAMILIES OF HELMHOLTZ–
GAUSS BEAMS
In Section 3, the general propagation properties of the
HzG beams were discussed. Particular attention was fo-
cused on the behavior of the beam and the angular spec-
trum. In this section, we investigate the propagation
characteristics of the HzG beams corresponding to each
fundamental family of ideal nondiffracting beams; they
are plane waves in Cartesian coordinates, Bessel beams
in circular cylindrical coordinates,1,2 Mathieu beams in el-
liptic cylindrical coordinates,3–5 and parabolic beams in
parabolic cylindrical coordinates.6 We use the term ‘‘fun-
damental’’ to refer to a family of ideal nondiffracting
beams that are eigenmodes of the Helmholtz equation in
a cylindrical orthogonal coordinate system. A fundamen-
tal family constitutes a basis for expanding any nondif-
fracting beam with the same transverse spatial frequency
kt . As far as we know, the general analytical expres-
sions for the Mathieu–Gauss (MG) beams and parabolic
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Gauss (PG) beams have not been reported nor have their
propagation features been studied in the literature.

A. Cosine Gauss Beams
One of the simplest nondiffracting beams in Cartesian co-
ordinates is the ideal cosine field

W~rt ; kt! 5 cos~kty ! (19)

resulting from the superposition of two ideal plane waves
exp(ikty)/2 1 exp(2ikty)/2. Its angular spectrum is not
continuous but discrete, namely, A( w) 5 d ( w 2 p/2)
1 d ( w 1 p/2), where d (•) is the Dirac delta function.
The cosine field (19) can be easily produced in the labora-
tory with a two-point Young experiment.

When the general expression for a HzG beam [Eq. (4)]
is applied, the expression for a cosine Gauss (CG) beam is
given by

CG~r! 5 expS 2i
kt

2

2k

z

m
D GB~r!cosS kty

m
D . (20)

Despite its simplicity, the CG beam exhibits all the
propagation characteristics of a HzG beam. The trans-
verse amplitude distribution of a CG beam is shown in
Figs. 2(a), 2(b), and 2(c) for z/zmax 5 0, 0.6, and 1.2, re-
spectively. For numerical purposes, we chose a waist
spot w0 5 2 mm and the parameter g 5 10. Assuming
an illumination at wavelength l 5 632.8 nm produces kt
5 10,000 m21 and zmax ' 1.98 m. At the plane z 5 0,
the field reduces to exp(2r2/w0

2)cos(kty).
The propagation of the amplitude and phase profiles of

a CG beam along the planes ( y, z) and (x, z) are de-
picted in Figs. 2(d) and 2(e). These plots were obtained
by evaluating Eq. (20) at 201 transverse planes evenly
spaced throughout the interval @21.2zmax , 1.2zmax#. The
CG beam behaves like a nondiffracting cosine field within
the range uzu < zmax .

The angular spectrum of the CG beam is determined
directly from Eqs. (10) and (19); after using the identity
cos(6ix) 5 cosh(x), we obtain

CG~u, v; z ! 5 D~z !expS 2
mw0

2

4
r2D cosh@2g2~v/kt!#.

(21)

The amplitude and phase distribution of the angular
spectrum is plotted as a function of the normalized spatial
frequencies in Figs. 2(f)–2(h) for z 5 0.6zmax and 1.2zmax .
The transverse shape of the power spectrum
uCG(u, v; z)u2 is invariant under propagation. As ex-
pected, the angular spectrum of the CG beam is repre-
sented by two Gaussian-like spots placed at (u, v)
5 (0, 6kt) and whose half-width is 2/w0 .

B. Bessel–Gauss Beams
The BG beams have been studied elsewhere7,8; in this
subsection, we briefly discuss them for completeness.

Bessel beams are exact nondiffracting solutions of the
scalar wave equation in circular cylindrical coordinates.1,2

The transverse field of the mth-order Bessel beam reads
as

W~rt ; kt! 5 Jm~ktr !exp~imf !, (22)
where Jm(•) is the mth-order Bessel function. The angu-
lar spectrum of the Bessel beams is located on a single
ring of radius r 5 kt in the frequency space, and its an-
gular dependence is A(w) } exp(imw).

Applying Eq. (4) and also noting that (x/m, y/m)
→ (r/m, f ), we find the expression for the BG beams to
be

BGm~r! 5 expS 2i
kt

2

2k

z

m
D GB~r!JmS ktr

m
D exp~imf !,

(23)

which is fully equivalent to other expressions for BG
beams analyzed previously.7–9

The transverse amplitude distribution of a first-order
BG beam is shown in Figs. 3(a), 3(b), and 3(c) for z/zmax
5 0, 0.6, and 1.2, respectively. For numerical purposes,
we chose a waist spot w0 5 3 mm and the parameter g
5 13. Assuming an illumination at wavelength l
5 632.8 nm produces kt 5 8665 m21 and zmax ' 3.44 m.
The propagation of the amplitude and phase profiles
along the plane (y, z) are depicted in Fig. 3(d). These
plots were obtained by evaluating Eq. (23) at 201 trans-
verse planes evenly spaced throughout the interval
@21.2zmax , 1.2zmax#. Outside this zone, the BG beam di-

Fig. 2. (a)–(c) Transverse amplitude distribution of a CG beam
at different z planes; (d), (e) propagation of the amplitude and
phase profiles along the planes (y, z) and (x, z); (f)–(h) ampli-
tude and phase distribution of the angular spectrum at different
z planes.
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verges, forming a ring-shaped pattern with mean radius
z tan u0 , where the half-aperture angle is u0
5 arcsin(kt /k) 5 0.05°.

The angular spectrum of the BG beams is determined
directly from Eqs. (10) and (22); after using the identity
Jm(2ix) 5 (2i)mIm(x), we obtain

BGm~u, v; z ! 5 ~2i !mD~z !expS 2
mw0

2

4
r2D Im~2g2r/kt!

3 exp~imf !, (24)

where Im(•) is the mth-order modified Bessel function of
the first kind.

C. Mathieu–Gauss Beams
Recently, Gutiérrez-Vega et al.3–5 demonstrated theoreti-
cally and experimentally the existence of the third family
of nondiffracting beams resulting from the solution of the
wave equation in elliptic cylindrical coordinates. Since
the transverse pattern of such beams is described by the
Mathieu functions, they were called Mathieu beams.
The exact analytical expression for the MG beams of any
order has not been reported yet.

The elliptic coordinates (j, h) are defined by x
5 f cosh j cos h and y 5 f sinh j sin h, where j P @0, `)
and h P @0, 2p) are the radial and angular variables, re-
spectively, and 2f is the interfocal separation. The trans-
verse field of the mth-order even and odd Mathieu beams
are written as

We~rt ; kt! 5 Jem~j, q !cem~h, q !, (25a)

Wo~rt ; kt! 5 Jom~j, q !sem~h, q !, (25b)

Fig. 3. (a)–(c) Transverse amplitude distribution of a first-order
BG beam at different z planes, (d) propagation of the amplitude
and phase profiles along the plane (x, z) in the range
@21.2zmax , 1.2zmax#.
where Jem(•) and Jom(•) are the mth-order even and odd
modified Mathieu functions, respectively, and cem(•) and
sem(•) are the mth-order even and odd ordinary Mathieu
functions, respectively.11 The parameter q
5 f 2kt

2/4 carries information about the transverse spa-
tial frequency kt and the ellipticity of the coordinate sys-
tem through f. The angular spectra of the even and odd
Mathieu beams lie on a ring of radius r 5 kt in the fre-
quency space, and their angular variations are given by
Ae( w) } cem( w, q) and Ao( w) } sem( w, q), respectively.

From Eqs. (4) and (25a), the closed-form expression for
the propagation of the mth-order even MG beams is found
to be

MGm
e ~r! 5 expS 2i

kt
2

2k

z

m
D GB~r!Jem~ j̄, q !cem~ h̄, q !,

(26)

where in a transverse z plane the complex elliptic vari-
ables ( j̄, h̄) are determined by the relations

x 5 f0~1 1 iz/zR!cosh j̄ cos h̄, (27a)

y 5 f0~1 1 iz/zR!sinh j̄ sin h̄, (27b)

with f0 being the semifocal separation at the waist plane
z 5 0. Note that, while the elliptic variables ( j̄, h̄) at
the plane z 5 0 are real, outside this plane they become
complex in order to satisfy the requirement that the Car-
tesian coordinates (x, y) remain real in the entire space.
MG beams of the form (26) constitute a complete family of
paraxial fields in the sense that any HzG beam with the
same kt can be expressed as a superposition of MG beams
with the appropriate weight factors.

The transverse amplitude distribution of a second-
order even MG beam with q 5 16 is shown in Figs. 4(a),
4(b), and 4(c) for z/zmax 5 0, 0.6, and 1.2, respectively.
We chose a waist spot w0 5 3 mm and a transverse wave
number for the Mathieu beam given by kt 5 8000 m21.
Assuming an illumination at wavelength l 5 632.8 nm
produces g 5 12, zmax ' 3.72 m, and f0 5 1 mm. The
propagation of the amplitude profiles along the planes
( y, z) and (x, z) is depicted in Fig. 4(d). These plots
were obtained by evaluating Eq. (26) at 101 transverse
planes evenly spaced throughout the interval @0, 1.2zmax#.
Note the characteristic cone-shaped region where con-
stituent waves superpose to build up the MG beam. The
MG beam behaves like a nondiffracting Mathieu beam
within the range uzu < zmax .

The angular spectrum of the MG beams is obtained di-
rectly from Eqs. (10) and (26); we have

MGm
e ~u, v; z ! 5 D~z !expS 2

mw0
2

4
r2D Jem~ ĵ, q !cem~ ĥ, q !,

(28)

where the complex elliptic variables ( ĵ, ĥ) in the fre-
quency space are determined by the following relations:

u 5
2i

w0
2

f0 cosh ĵ cos ĥ, (29a)
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v 5
2i

w0
2

f0 sinh ĵ sin ĥ. (29b)

The amplitude and phase distributions of the spectrum
of the MG2

e beam are shown in Figs. 4(e)–4(g) as a func-
tion of the normalized coordinates (u/kt , v/kt) for z 5 0
and 1.2zmax . The transverse shape of the power spec-
trum uMGm

e (u, v; z)u2 is invariant under propagation.
As expected, for g 5 12 the angular spectrum is an azi-
muthally modulated annular ring with mean radius r/kt
5 1 and angular dependence approximately given by
ce2( w, q).

BG beams with azimuthal angular dependence
exp(imf ) have a phase that rotates circularly around the
propagation axis. In a similar way, from the stationary
mode solutions described by Eq. (26), it is possible to con-
struct helical Mathieu–Gauss (HMG) beams of the form

HMGm
6~r! 5 MGm

e ~r! 6 iMGm
o ~r!, (30)

but whose phase rotates now elliptically around a strip
defined by (uxu < f, 0, z). The sign in Eq. (30) defines the
rotating direction. Equation (30) is valid for m . 0 be-
cause MGm

o (r) is not defined for m 5 0. In Figs. 5(a),
5(b), and 5(c), we show the transverse magnitudes and

Fig. 4. (a)–(c) Transverse amplitude distribution of a second-
order even MG beam at different z planes, (d) propagation of the
amplitude pattern along the planes (y, z) and (x, z) in the range
@0, 1.2zmax#, (e)–(g) amplitude and phase distributions of the an-
gular spectrum as a function of the normalized coordinates
(u/kt , v/kt).
phases of the helical modes HMG7
6(r; q 5 16) at planes

z 5 0, 0.6zmax , and 1.2zmax , respectively. The pattern
consists of well-defined elliptic confocal rings with a dark
elliptic spot on axis. The amplitude and phase distribu-
tion of the spectrum of HMG7

6(r; q 5 16) is shown in
Figs. 5(d)–5(f) for z 5 0 and z 5 1.2zmax . The HMG
beams presented here could be applied to construct ellip-
tic optical tweezers and atom traps as well to study the
transfer of angular momentum to microparticles or
atoms.

D. Parabolic Gauss Beams
In a recent paper, Bandres et al.6 demonstrated theoreti-
cally the existence of parabolic beams, which constitute
the fourth family of fundamental nondiffracting beams.
It was found that the transverse structure of the para-
bolic beams is described by the parabolic functions, and,
contrary to Bessel or Mathieu beams, their eigenvalue is
continuous instead of discrete. In this subsection, we in-
troduce for the first time a closed-form expression for the
PG beams.

The parabolic cylindrical coordinates (j, h) are defined
by x 5 (h2 2 j2)/2 and y 5 jh, where the variables
ranges in j P @0, `) and h P (2`, `). The transverse
field of the even and odd parabolic beams is written as

We~j, h; kt! 5
uG1u2

pA2
Pe(A2ktj; a)Pe(A2kth; 2a),

(31a)

Fig. 5. (a)–(c) Transverse amplitude and phase distributions of
a seventh-order HMG beam at different z planes, (d)–(f) ampli-
tude and phase distributions of the angular spectrum as a func-
tion of the normalized coordinates (u/kt , v/kt).
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Wo~j, h; kt! 5
uG3u2

pA2
Po(A2ktj; a)Po(A2kth; 2a),

(31b)

where G1 5 G( 1
4 1

1
2 ia), G3 5 G( 3

4 1
1
2 ia), and the pa-

rameter a represents the order of the beam and can as-
sume any real value in the range (2`, `). The functions
Pe(•) and Po(•) are the even and odd solutions to the para-
bolic cylindrical differential equation @d2/dx2

1 (x2/4 2 a)#P(x; a) 5 0. The angular spectrum of the
even parabolic beams lies on a ring of radius r 5 kt in the
frequency space, and its angular variation is given by
Ae( w) 5 (4pusin wu)21/2 exp@ia lnutan( w/2)u#.

Applying Eq. (4) and also noting that (x/m, y/m)
→ (j/Am, h/Am) for parabolic coordinates, we find the
expression for the even PG beams, PGe(r) to be

PGe~r; a ! 5 expS 2i
kt

2

2k

z

m
D GB~r!

uG1u2

pA2

3 Pe~A2kt /mj; a !Pe~A2kt /mh; 2a !.

(32)

The transverse amplitude distribution of an even PG
beam with a 5 3 is shown in Figs. 6(a), 6(b), and 6(c) for
z/zmax 5 0, 0.6, and 1.2, respectively. The field exhibits
well-defined parabolic nodal lines. We chose a waist size
of the Gaussian modulation given by w0 5 2 mm and the
parameter g 5 10. Assuming an illumination at wave-

Fig. 6. (a)–(c) Transverse amplitude distribution of an even PG
beam with a 5 3 at different z planes, (d) propagation of the am-
plitude pattern along the plane (x, z) in the range @0, 1.2zmax#,
(e)–(g) amplitude and phase distributions of the angular spec-
trum.
length l 5 632.8 nm produces kt 5 10,000 m21 and zmax
' 1.98 m. The propagation of the amplitude profile
along the plane (x, z) is depicted in Fig. 6(d). This plot
was obtained by evaluating Eq. (32) at 101 transverse
planes evenly spaced throughout the interval @0, 1.2zmax#.
PG beams of the form (32) constitute a complete family of
paraxial fields in the sense that any HzG beam with the
same kt and w0 can be expressed as a superposition of PG
beams with the appropriate weight factors.

The angular spectrum of the PG beams is obtained di-
rectly from Eqs. (10) and (31a); we have

PGe~u, v; z ! 5 D~z !expS 2
mw0

2

4
r2D uG1u2

pA2

3 Pe(A2iktw0
2j̃; a)Pe~A2iktw0

2h̃; 2a !,

(33)

where the parabolic coordinates ( j̃, h̃) in the frequency
space are given by u 5 (h̃2 2 j̃2)/2 and v 5 j̃ h̃. The
amplitude and phase distributions of the spectrum of the
PGe(r) beam are shown in Figs. 6(e)–6(g) as a function of
the normalized coordinates (u/kt , v/kt) for z 5 0 and
1.2zmax . As expected, for g 5 10 the pattern of the spec-
trum is a ring with mean radius r/kt 5 1 and angular de-
pendence approximately given by Ae( w).

From the stationary beam solutions described by Eqs.
(32), it is possible to construct traveling PG (TPG) solu-
tions of the form

TPG6~r; a ! 5 PGe~r; a ! 6 iPGo~r; a !, (34)

whose associated spectra are A6( w; a) 5 Ae( w; a)
6 iAo( w; a), in which the sign defines the traveling di-

Fig. 7. (a)–(c) Transverse amplitude and phase distributions of
a TPG beam with a 5 3 at different z planes, (d)–(f) amplitude
and phase distributions of the angular spectrum.
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rection. In Figs. 7(a)–7(c), we show the transverse mag-
nitudes and phases of the traveling TPG1(r; a 5 3) at
planes z 5 0, 0.6zmax , and 1.2zmax , respectively. The
pattern consists of well-defined confocal parabolas open-
ing along the positive x axis. The amplitude and phase
distribution of the spectrum of TPG1(r; a 5 3) is shown
in Figs. 7(d)–7(f) for z 5 0 and z 5 1.2zmax . The
traveling-wave feature can be observed in the gradient of
their phase structure.

5. CONCLUSIONS
A detailed analysis of the propagation of an arbitrary non-
diffracting beam whose disturbance in the plane z 5 0 is
modulated by a Gaussian envelope has been presented.
We have found that the propagation through the whole
space can be described by a simple and elegant closed-
form expression composed of an amplitude factor depend-
ing on the z coordinate, a Gaussian beam, and a scaled
version of the transverse shape of the ideal nondiffracting
beam. Independently of the transverse shape of the ideal
nondiffracting beam, our analysis revealed the existence
of general features of the Helmholtz–Gauss (HzG) beams;
for instance, the finite region where the beam exhibits a
nondiffracting behavior, the doughnutlike far-field pat-
tern, and the annular distribution of the angular spec-
trum. The transverse structure of the power spectrum
remains invariant under propagation.

Closed-form expressions for the four families of HzG
beams have been derived. In particular, we have dis-
cussed analytically and numerically for the first time the
propagation properties of the Mathieu–Gauss beams in
elliptic coordinates and the parabolic Gauss beams in
parabolic coordinates.

APPENDIX A: DERIVATION OF THE
HELMHOLTZ–GAUSS BEAM
While Gori et al.7 and Li et al.8 derived the BG beam so-
lutions from the Kirchhoff–Huygens field integral under
the Fresnel approximation starting from the disturbance
at plane z 5 0, Kiselev9 applied the separation-of-
variables technique to generalize the BG solutions. In
this appendix, we follow a different approach to derive the
analytical expression for a general HzG beam.

Ideal monochromatic nondiffracting beams can be ob-
tained as a suitable superposition of plane waves whose
transverse wave numbers kt are restricted to a single
value [see Eq. (3)]. With this in mind, we first investi-
gate the propagation along the positive z axis of a tilted
single plane wave exp@i(kxx 1 kyy 1 kzz)#, whose ampli-
tude at the plane z 5 0 is modulated by a Gaussian func-
tion, namely,

u0~x, y ! 5 exp~2r2/w0
2!exp@i~kxx 1 kyy !#. (A1)

Let the field

u~r! 5 exp~ikz !C~r! (A2)

satisfy the three-dimensional Helmholtz equation (¹2

1 k2)u(r) 5 0 under the paraxial regime and restricted
to the boundary condition u(x, y, 0) 5 u0(x, y). The
function C(r) is a slowly varying complex envelope that
satisfies the paraxial wave equation

S ]2

]x2
1

]2

]y2
1 2ik

]

]z D C~r! 5 0. (A3)

We try to construct a solution of Eq. (A3) having the
form

C~r! 5 exp@iP~z !#expF ikr2

2q~z !
GexpH iF kxx

m~z !
1

kyy

m~z !
G J ,

(A4)

where m(z), P(z), and q(z) are functions to be deter-
mined. In assuming a solution of the form (A4), we are
allowing for the possibility that the amplitude and the
phase of the plane wave can vary with distance of propa-
gation. Substitution of Eq. (A4) into the paraxial wave
equation (A3) yields three equations

dq

dz
2 1 5 0, (A5a)

q
dm

dz
2 m 5 0, (A5b)

i2km2 2 kt
2q 2 2kqm2

dP

dz
5 0. (A5c)

Integrating Eq. (A5a), we obtain

q 5 q0 1 z, (A6)

where q0 is a constant. Then Eq. (A5b) can be solved:

m 5 m0q, (A7)

where m0 is a constant. If we substitute m and q into Eq.
(A5c), the function P is obtained after integration:

P 5 i ln q 1
kt

2

2km0
2q

1 P0 , (A8)

where P0 is another constant to be determined.
The constants q0 , m0 , and P0 are determined by the re-

quirement that u(r), given by Eq. (A4) for z 5 0, reduce
to the boundary condition (A1), with the result that

q0 5 2izR , m0 5
i

zR
, P0 5 2i ln~2izR! 1 i

kt
2zR

2k
,

(A9)

where zR 5 kw0
2/2 is the Rayleigh range of the Gaussian

beam. It then follows that

q~z ! 5 z 2 izR , (A10a)

m~z ! 5 iq/zR 5 1 1 iz/zR , (A10b)

P~z ! 5 i ln@~1 1 z2/zR
2 !1/2#

2 arctanS z

zR
D 2

kt
2zR

2k S zR

q
2 i D . (A10c)
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Inserting m(z), P(z), and q(z) into the field C(r) [Eq.
(A4)], we obtain

C~r! 5 expXiH i ln@~1 1 z2/zR
2 !1/2# 2 arctanS z

zR
D

2
kt

2zR

2k S zR

q
1 i D J C

3 expF ikr2

q~z !
GexpF iS kxx

m
1

kyy

m
D G . (A11)

By defining the constant k 5 kt
2/2k and noting that

w(z) 5 w0(1 1 z2/zR
2 )1/2 and

1

m
5

1

1 1 iz/zR
5

zR

iq
5

w0

w~z !
exp@2i arctan~z/zR!#,

(A12)

we can write the field C(r) in the form

C~r! 5
1

m
expS 2i

kz

m
D expS 2

r2

mw0
2D expF iS kxx

m
1

kyy

m
D G .

(A13)

By multiplying by the longitudinal phase factor
exp(ikz), we get

u~r! 5 expS 2i
kz

m
D exp~ikz !

m

3 expS 2
r2

mw0
2D expF iS kxx

m
1

kyy

m
D G .

(A14)

Equation (A14) describes the propagation of a tilted
Gaussian wave whose mean wave vector has a projection
kt 5 (kx

2 1 ky
2)1/2 on the plane z 5 0, forming an angle w

5 arctan(ky /kx) with respect to the x axis.
HzG beams with arbitrary transverse distribution can

be constructed by superposing waves of the form (A14),
namely,

U~r! 5 E
2p

p

A~ w!u~r!dw, (A15)

where A( w) defines the amplitude and phase factor of the
constituent Gaussian waves. Substituting Eq. (A14) into
Eq. (A15), we obtain

U~r! 5 expS 2i
kz

m
D exp~ikz !

m
expS 2

r2

mw0
2D E

2p

p

A~ w!

3 expF iS kxx

m
1

kyy

m
D Gdw. (A16)

From Eq. (3), we note that the integral in Eq. (A16) de-
scribes the transverse field distribution W of an ideal non-
diffracting beam evaluated at the scaled coordinates
(x/m, y/m). The expression for the HzG beams can be fi-
nally rewritten as
U~r! 5 expS 2i
kz

m
D exp~ikz !

m
expS 2

r2

mw0
2D WS x

m
,

y

m
; ktD ,

(A17)

which is the same as Eq. (4).

APPENDIX B: DERIVATION OF THE
ANGULAR SPECTRUM OF THE
HELMHOLTZ–GAUSS BEAM
Across a transverse plane z, the field U(r) has the angu-
lar spectrum given by the two-dimensional Fourier trans-
form

U~u, v; z ! 5
1

2p
E

2`

` E
2`

`

U~r!exp~2ixu 2 iyv !dxdy,

(B1)

where (u, v) are the Cartesian coordinates in the fre-
quency space. As shown in Appendix A, the field U(r) re-
sults from a suitable superposition of fields u(r) [see Eq.
(A15)]. Therefore the spectrum U(u, v; z) can be found
by calculating

U~u, v; z ! 5 E
2p

p

A~ w!F$u~r!%dw, (B2)

where F$u(r)% is the two-dimensional Fourier transform
of u(r). From Eqs. (A14) and (B1), F$u(r)% is given by

F$u~r!% 5 f~z !E
2`

` E
2`

`

expS 2
r2

mw0
2

1
ikxx

m

1
ikyy

m
2 ixu 2 iyv D dxdy, (B3)

where f(z) 5 exp(ikz)exp(2ikz/m)m21/2p.
If we write the double integral as the product of two

single integrals and apply the known result
*2`

` exp(2a2x 6 bx) 5 Ap exp(b2/4a2)/a, Eq. (B3) be-
comes

F$u~r!% 5 D~z !expS 2
w0

2m

4
r2D expFw0

2

2
~kxu 1 kyv !G ,

(B4)

where r 5 (u2 1 v2)1/2 is the radial coordinate in the fre-
quency space and

D~z ! 5
w0

2

2
expS 2

1

4
kt

2w0
2D exp~ikz ! (B5)

is an amplitude factor that depends on z only.
Inserting Eq. (B4) into Eq. (B2) and noting from Eq. (3)

that the integral

E
2p

p

dwA~ w!exp@i~w0
2kxu 1 iw0

2kyv !/2i# (B6)

is the function W(x, y) evaluated at (w0
2u/2i, w0

2v/2i), we
finally obtain
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U~u, v; z ! 5 D~z !expS 2
w0

2m

4
r2D WS w0

2

2i
u,

w0
2

2i
v; ktD ,

(B7)

which is the same as Eq. (10).

APPENDIX C: EXPRESSING THE
HELMHOLTZ–GAUSS BEAM IN THE
STANDARD NOTATION
For visualization purposes, it is instructive to convert the
HzG beam [Eq. (4)] into the standard notation that is
widely used in the laser field.10 If we define the beam
width w(z) 5 w0(1 1 z2/zR

2 )1/2, the radius of curvature
R(z) 5 z 1 zR

2 /z, and the Gouy shift U(z)
5 arctan(z/zR) and also note that m21

5 @w0 /w(z)#exp@2iU(z)#, the field U(r) takes the form

U~r! 5 expS 2
r0

2

w0
2D w0

w~z !
expF2

r2 2 r0
2

w2~z !
1 ikz

1 i
k~r2 2 r0

2!

2R~z !
2 iU~z !GWS x

m
,

y

m
; ktD ,

(C1)

where

r0 [
1

2
ktw0

2 5
kt

k
zR . (C2)

Note that the amplitude and phase factors accounting
for the propagation in Eq. (C1) contain a term that is qua-
dratic in r0 .

The presence of the fundamental Gaussian beam

GB~r! 5
w0

w~z !
expF2

r2

w2~z !
1 ikz 1 i

kr2

2R~z !
2 iU~z !G

(C3)

as an explicit factor is clearly recognized in expression
(C1). The HzG beams can be then written in a more
meaningful form as

U~r! 5 C~z !GB~r!WS x

m
,

y

m
; ktD , (C4)
where the complex-amplitude factor C(z) is given by

C~z ! 5 expF r0
2

w2~z !
2

r0
2

w0
2GexpF2i

kr0
2

2R~z !
G . (C5)
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