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Advances in the fabrication of nanocavities to confine electrons have popularized newly the study of 20 quantum wells. The analogies
and differences between classical and quantum probability distributions and energy spectra of a particle confined in an elliptic billiard are
presented. Classically, the probability densities are characterized by the eigenvalues of an equation that involves elliptic integrals, whereas the

ordinary and modified Mathieu functions are applied to describe the quantum distributions. The transition from the elliptic geometry toward
the circular geometry is analyzed as well. The problem is interesting itself because it presents strong analogies with the electromagnetic
propagation in elliptic waveguides.

K~ords: Quantum and classical elliptic billiard; Mathieu functions; Hamilton-Jacobi theory; elliptic integrals

Los avances en la fabricaei6n de nanocavidades para continar electrones han popularizado nuevamente el estudio de pozos culinticos bidi­
mensionales. En este trabajo se presentan las analogfas y diferencias entre las distribuciones de probabilidad Y espectros de energfa de
una partlcula confinada en un billar elfptico. Clll.sicamente las densidades de probabilidad estlin caracterizadas por los eigenvalores de una
ecuaci6n que involucra integrales elfpticas, mientras las ecuaciones radial y angular de Mathieu se aplican para describir las dislribuciones
culinticas. La transici6n de la geometrfa elfptica a circular es analizada tambien. EI problema es interesante pues presenta muchas analogias
con la propagaci6n electromagnetica en gufas de onda elfpticas.

Descriprores: Billar elfptico c1lisico y culintico; funciones de Mathieu; teona de Hamilton-Jacobi; integrales elipticas

PACS: 02.30A; 02.30Jr

1. Introduction

The study of energy spectra of physical systems plays a fun­
damental role in quantum mechanics (QM). The problem of a
free particle moving in an one-dimensional (1 D) infinite well
may be the first and most frequently solved eigenvalue pro­
blem in elementary QM textbooks [1,2]. The simplicity of
the ID model permits us to get a first insight about important
results of QM (e.g., nonnalized wave functions, energy-level
spacings). Usually, the two-dimensional (20) infinite rectan­
gular billiard is considered to show the existence of degene­
racies {2J, and infinite circular billiard is useful to introduce
the concept of angular momentum {3] and also presents de­
generacies. Evidently most of the textbooks are focused to
study the quantum phenomena involving three-dimensional
systems (e.g.• probability distributions in an atom of hydro­
gen).

The 2D systems ~ve became more popular in recent
years because progress in nanotechnology have allowed to
fabricate very small closed structures (i.e., quantum corrals),
which can be used to confine electrons [4]. The boundary of
the nanodevices is sharp enough to consider that the electron
may be regarded as a particle confined to a 2D infinite bil­
liard. Hence the energy spectrum of the electron can be des­
cribed by solving the appropriate Schr&linger wave equation
inside the billiard with the Dirichlet condition at the boun­
dary. In addition, the study of trajectories in 20 billiards is of
particular interest in classical and quantum chaos as well [5J.

As we mentioned above, the rectangular and circular bil­
liards are well-treated in textbooks, however we think that
this is not the case with the elliptic geometry. Due to the
renewed attention in 2D systems, the purpose of our work
is to present a study of the classical and quantum elliptic
billiard as an example of a 2D system with non-degenerate
states. Besides, the quantum elliptic billiard has exact analy­
tical solutions which allow us to write the eigenfunctions in a
closed fonn, namely Mathieu functions. In order to establish
a connection between classical and quantum mechanics, we
compare the probability distributions to show that both ap­
proach each other as the energy increases. Our results are
compared with respect to known literature of elliptic billiards
(see Refs. 6-9, and 11, and references therein).

This work is intended also for researchers who are inte­
rested in the solution of the SchrOdinger equation in ellip­
tic coordinates and the application of Mathieu functions. In
such a way, this paper may be considered as a continuation
of one preceding [10], where we discuss the free oscillations
of an elliptic membrane, and include a more detailed treat­
ment of the Mathieu function theory. Part of the results in­
cluded in this paper were already discussed in Ref. II. On the
other hand, the problem may result interesting to researchers
involved in the study of propagation of light inside elliptic
waveguides, due to the strong analogies between classical
mechanics solutions with the ray-trajectories in geometrical
optics, and the QM solutions with the propagating modes in
electromagnetic theory.
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2. Classical mechanics solution

FIGURE 1. Geometry of the billiard in elliptic coordinates. The
boundary is given by e = eo and the range of the coordinates
aree E {O, 00) and 11 = [0,211").

(8)

dI; • dry •
v = hI dtE +h2dt "" (4)

where hI and h2 are the metric factors of the generalized co­
ordinates qi = { and q2 = 1] given by

h~ = h~ = h2 = ~'l (cosh2{ _ oos21]), (5)

and eand fj are the elliptic unit vectors related to cartesian
unit vectors by

(£) f (Sinh, cos ry - cosh, sin ry) (l)
ii = h cosh{sin71 sinb {cos 1] fj' (6)

According to classical mechanics theory, the canonical
momenta are expressed as

8L ,dI;
P'=8~~Mhdt'

8L 2d11
P'=8;,=Mh dt , (7)

where L = (1/2)Mh'[(dI;/d')' + (dry/d')'] is the la­
grangian and M is the mass of the particle. For our conserva­
tive billiard, the hamiltonian is equal to the total mechanical
energy E, and it can be written in terms of canonical mo­
menta as

As we mentioned previously, the second constant of mo­
tion is the product of angular momenta with respect to the
foci

where the contour integral is carried out over a complete pe­
riod of the coordinate q•. The angle variable 8; corresponds
to the frequency Wi of the periodic motion of the coordi­
nate qj and is given by

_ de, _ 8H(J, e) (2)
Wj=dt:- 8J. '

•
where H is the hamiltonian of the system. In our two-climen-
sional billiard, the periodic trajectories are determined by the
condition that W1jW3must be equal to rjn. A detailed treat­
ment of Hamilton-Jacobi theory can be found in Ref. 13.

Let us first introduce the elliptic coordinates

x=jcosh{cosll, y=jsinh{sinll.

The boundary of the elliptic billiard is expressed as
{= Eo = arctanh(bja) = constant, where a and b are
the semi-major axis and semi-minor axis of the ellipse,
respectively, (b < a). The semifocal distance j is given by
p = a 2

- b2
, and the eccentricity e is defined as

f 1e= -= --. (3)
a cosh{o

The velocity of the particle as a function of the elliptic
coordinates is

(I)
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The paper is organized as follows. In Sec. 2, we present
the procedure to obtain the classical trajectories for periodic
orbits in the billiard. The eigenfunctions corresponding to
quantum billiard are given in Sec. 3. The probability distribu­
tions for classical and quantum cases are compared in Sec. 4,
where the energy spectrum for elliptic billiard is compared
with respect to circular billiard also. Finally, in the conclu­
sions we point out some final comments.

The geometry of the elliptic billiard is shown in Fig. 1. Clas­
sically speaking, the particle moves freely inside the billiard
and it is elastically bounced at the boundary. The system
presents two degrees of freedom and two constants of mo­
tion [12], the first of them is the total energy E and the second
one is the dot product of the angular momenta with respect
to the foci of the ellipse, A = L I • L 2 • It follows that elliptic
billiard is an integrable system whose dynamical behavior is
regular and predictable. In general, the motion of the particle
is characterized in tenns of the canonical coordinates qj and
canonical momenta Pi' Because there exist two constants of
motion, the particle is restricted to move in a specific trajec­
tory in the phase space (q.,p,;), where E and A are main­
tained fix.ed.

In particular, we are interested in periodic trajectories in
the billiard. An effective method of handling these periodic
systems is provided by the application ofaction-angle varia­
bles in the Hamilton-Jacobi theory (HIT). In HIT tennino­
logy, the constants of motion are called the action variables
of the system and they are often represented as Jj(qj,P.).
For each J. (qj' Pj) there ex.ist a corresponding angle varia·

ble designated by E>.(q.,p;). The action variable J j is deter­
mined by
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(12)

(17)

(16)

(18)

(15)

(14)

1" <0.

"I> 0,

F(6, m) = l' d6
o VI-msin2 (J

Finally, by substituting Eqs. (15) and (16) in Eq. (14). the
characteristic equations for periodic trajectories are

F(i>e~) = ;nF(q,,,e~),

F(i'e~) = ;nF(q,2'e~)'

{

[ME eo ( 'laJe = -Y2,;27 F q,\,ee' "1>0,

a-, [MEl ( I)-Y2,;2/F ~'e~ , "1<0,

{

v'2ME eo (" ')aJT/ = 1T 7 F 2' ee , "I> 0,

8, v'2ME I (" I)-IF -2'2' "1<0,
" eo

wheresin~, = VI- (J'jIi'h,sin~,= ..,jli'/(Ii' 1',),
and F«(J, m) is the elliptic integral of the first kind [14],
given by

JMEf' 1'/' ./lfJ=4 ~ fJe ysin21J+"fdTJ, (13)

where the lower limits of the integrals are different depend­
ing on the kind of motion. For rotational motion ("f > 0),
~e = arccosh(l{ee) and fie = O. For oscillating mo­

tion b < O)'~e = °and Tlml" = arccos(l{ee)'
The condition of periodic trajectories is reached when the

quotient of the frequencies associated to each coordinate is a
rational number. According to Eq. (2), we have

8H 1
8J

I
w( ale aJT/ a; r

w~ ~~ = aJe = IC;:;I = ~

By differentiating Eqs. (12) and (13) with respect to "f,
and after some manipulations. we arrive to

(9)

PROBABILITY DISTRIBUTIONS IN CLASSICAL AND QUANTUM ELLIPTIC BILLIARDS

By inserting the momenta p{(E,1') and p'I(E,l'} in
Eq. (1), the actions are given by

J~ = 2V~~t i:o VSinh2 ~ ~ l' df.,

where r 1 = (x - f)x + yfJ and r 2 = (x + j)x + yf!. By
usin,g Eqs. (4) and (6), we can obtain A as a function of the
elliptical coordinates

which can also be expressed as a function of the canonical
momenta by Eq. (7)

A = C(p~ sinh2 ~ - P~ sin2 TJ).

482

The conserved quantity A is a useful parameter to de­
fine the kind of motion of the particle. In general, there are
two types of motion depending on the sign of A. The first
case, A > 0, corresponds to trajectories that have an inner
elliptic caustic ~ = ~c = constant > O. confocal to the
boundary and, therefore. the particle never crosses the x-axis
between the foci. In this case, the ~ coordinate is restricted to

oscillate in the range e E [{CleO] whereas the 1] coordinate
does not have any restrictions. We wHi identify this motion
as rotational type (R), (see Fig. 3).

On the other hand, in the second type of motion, A < 0,
the trajectories generate two caustics in the form of cofocal
hyperbolas, TI:::: Tic and 1J:::: 1T -1Je , where 1Je < 1T{2. Now,
the particle always cross the x-axis between the foci and the
bounces happen alternately in the upper and lower parts of
the billiard. The 1J coordinate of the particle is limited to vi­
brate in the range TJ E [1Je' 1t -1Je] , whereas the ~ coordinate

oscillates in the whole range ~ E [0, ~o]. As above, we will

identify this motion as oscillating type O. (see Fig. 5).
The separatrix occurs when A :::: 0, and the particle just

crosses over the focal points. It should be mentioned that the
range of A is limited to

where the lower limit Amin :::: -2MEf2 corresponds to the
motion along the y-axis and the upper limit Amax :::: 2MEb2

represents the limiting motion over the boundary. Because A
is energy-dependent, it is preferable to define a new energy­
independent parameter, say "f, given by

A E [ - 2MEI',2MEb'J,

In terms of "f, the eccentricity of the caustic ee is deter­
mined by

(11)I I
e :::: - = .

e ae vI + "f

The canonical momenta Eq. (7) can be written as a function
of"f and E as follows

P~ = 2M Ef2( sinh2 ~ - "f),

P~ = 2MEJ" (sin
2

1J +"f).

The roots of the characteristic equations are the possible
values of "I to have periodic orbits in the billiard.

2.1. Periodic trajectories

We first discuss the rotational trajectories characterized by
Eq. (17). By applying the jacobian elliptic function sn(u) to
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FIGURE 2. Plots of characteristic equation for R-trajectories for an
ellipse with b/a = sin ('1J'/3) and f = 0.5.
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FIGURE 4. Plots of the characteristic equation for O-trajeclories
for an ellipse with b/a = sin{1l'J8). The curve (8,1) corres­
ponds to cut-off condition nlr = 1/8 and, therefore. intersect al
limit"'f = -1. Observe that curve (10, 1) does not intersect because
it is out of the valid range 1/8 S n/r < 1/2.1~.2115.1)14,1113.1)

FIGURE 3. Periodic R-trajectories corresponding to data in Fig. 2.

both sides of the Eq. (17), we can obtain FIGURE 5. Periodic O-trajectories corresponding to data in Fig. 4.

The above equation has real solutions for T 2: 4 and
n < r 12, where r must be an even integer in order to
have closed oscillating trajectories. Furthennore, a certain
O-trajectory (r, n) can be present in the ellipse only if it sa­
tisfies the next cut-off condition

. n b
sm -1r > ­

r - a'

where K(m) = F(7r/2,m) is the complete elliptic inte­
gral of the first kind. Equation (19) has real solutions for
r 2 3 and n < r 12. The parameters rand n are the num­
ber of bounces at the boundary and the rotation number res­
pectively. In Fig. 2 we plot both sides of the Eq. (19) for the
first values of r and n. The intersections correspond to the
eigenvalues of ')' to have closed trajectories inside the bil­
liard. The paths associated to the eigenvalues of')' are plotted
in Fig. 3. We should mention that we have taken advantage
of MATLAB software utilities [15] to implement all plots in
this work.

On the other hand, Eq. (18) is inverted as follows

')' > 0,

')' < O.

(19)

(20)

where the equality corresponds to motion along the minor­
axis o~ the ellipse as it is shown in Fig. 5. Both sides
of the characteristic equation [Eq. (20)] are plotted in

Fig. 4, where we have chosen a = Vsin(1r13)/sin(1r/8)
and bla = sin (1r18), [i.e., e = cos (1r18)] with two purposes:

a) To match the trajectory (8,1) with the cut~off condi­
tion in order to visualize this situation.

b) To maintain the same area of the ellipse (1rab) from the
above rotating case (Fig. 2) in order to make appropri­
ate comparisons with the quantum solutions.

3. Quantum mechanics solution

The quantum energy spectrum of a particle in the infi~

nite billiard is obtained by solving the time-independent
SchrOdingerequation

. [Ii', ]H<p(,,")= - 2M \7 +U«,") <p«,")=E<p«,"), (21)

where iI is the energy operator (i.e. the hamiltonian), 'P(e, 71)
is the eigenfunction corresponding to the characteristic ener­
gy E, and U({, 71) is the potential energy expressed by

( {
O, fo', ,; ,,,

U ,,") =
00, for e> eo.
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where 0: is the constant of separation and q is a dimensionless
parameter given by

R"({) - (0 - 2qcosh2{}R(O = 0, (23)

e"(") + (0 - 2qcos2"}e(") = 0, (24)

(29)

(27)

• - - - - .- - - -
- - - - --~ - - - -,

/
, , , ",

R , ,,,
,,," •,

"- - - - -
" i , ,

f , ,'. , ,
-+ .- - - ,..;. .- • . ,

• ,
• , • 0. .0" . ,,
~

, ,. , ., ,-,. " ..
-" CIoIo;ooJ ,,"" T' -, ,

"
,

~ , ,

~. • • ,.
" " " " ••

On the other hand, the solutions for MME [Eq. (23)]
is obtained from the OMF by setting the change of varia­
ble1] = i~

{

Ce,({,q,) ~ I: A,(r,q,)coshk{,
Rr(~) = k:O

S€r+l(~,qr) = L Bk(r,qr)sinhkr
k:l

The Dirichlet condition at the boundary is satisfied when

R,.({.) = { Ce,({"q) = 0, (28)
Ser+1({",q) = O.

The solution of the MME [Eq. (23)] can also be contem­
plated as an independent eigenvalue problem, but now, q is
the unknown eigenvalue and 0: is the fixed parameter. As
above, we can express the eigenvalues associated to a and !3
as eqm(O:) and oqm(!3), respectively, where m 2': 1 and
the subindex e or 0 refers to even or odd MMF. The plots
of eqm(a) and oqm(!3) are shown in Fig. 6. Since the solu­
tion cp({, 1]) is the product of solutions of Eqs. (23) and (24)
for the same value of QI; (/3) and q, then there exist a valid
solution for each cross-point between the two families of
curves. In other words, the MMF are decreasing-oscillatory
non-periodic functions similarly to Bessel functions, there­
fore, if we choose a certain order r we have an infinite set of
possible values of q that satisfy Eq. (28).

Let qr,m be the m·th zero ofMMF of r-order. According
to Eq. (25) for each qr,m there exist a corresponding energy
eigenvalue Er,m associated to the eigenfunction l{J..,m({, 1])

FIGURE 6. Plots of a .. (q) (solid curves), /3"+1 (q) (dashed curves),
eq",(a) (doned curves) and "qm(/3) (dash-dot curves) in the
(q, a)-plane. The square markers correspond to .q..,m eigenvalues
(cross-points between 01 .. and eqm) and ciIcle markers correspond
to "qr,m eigenvalues (cross-points between /3r and "qm) for an el­
lipse with data as in Fig. 2, (i.e., e = 0.5). We can appreciate that
I3,Cq) -+ a.(q) -+ r 2 as q -+ 0 and that .B'+l(q) -+ a,,(q)
as q -+ 00.

(22)

(26)

(25)

=L A,(r,q)cosk",
,\;:0

=
= L Bk(r,q) sin k'l1,

k:1

The eigenfunctions lp(~,7J) must satisfy the Dirichlet
boundary condition rp(~o, 7J) = 0, and the periodicity condi­

tion i.p(~, 11) = rp({, 71+ 211). The laplacian operator expressed
in elliptic coordinates is written as [10J

182 182

V
2

= h2 ae + h2 BTJ2'

k2 j2 Mj2
q = -4- = 2hZ E.

The Eqs. (23) and (24) are known as modified Mathieu
equation (MME) and ordinary Mathieu equation (OME), res­
pectively. The solutions to these Equations are known as
modified Mathieu functions (MMF) and ordinary Mathieu
functions (OMF) [16], respectively.

We first consider the solution of OME [Eq. (24)]. Since
the OMF must be periodic, we can express them in term of
Fourier series

[
8' 8' k'f' ]ae + 8rp + -2-(cosh2{ - cos21J) rp({,f/) = 0,

where k2 = 2ME/'.,?
Supposing the solution rp({, 7]) = R({)0(f1), the 20 SE

is separated into the next two ordinary differential equations

where the order (r 2': 0) is related to the r~th eigenvalue a r of
the equation and cer('l1, q) and S€r+l ('l1, q) are known as the
even and odd Mathieu functions, respectively. These eigen­
values are those values of a which, for a certain fixed para­
meter q, the OME admits solutions with period 11" or 211".

For simplicity, we denote the eigenvalues associated
to cer(1], qr) and ser+l ('l1, qr) as a r (q) and !3r+l (q), respec­
tively. According to the Sturm-Liouville theory, all eigenva­
lues are real and a o < !31 < at < !32'" The plots
of ar(q) and !3r+1(q) in the (q,a)~plane are lines that do
not intersect (Fig. 6). The even-order solutions have perioci1l",
whereas odd-order solutions have period 211'. The Fourier co­
efficients Ak(r, qr) and Bk(r, qr) can be computed by using
the well-known recurrence relations for the Mathieu equa­
tions [10, 14].

where h is given by Ec. (5). By replacing the laplacian in
Eq. (21), and taking the fact that U ({, "1) = 0 in the billiard,
the 20 Schrooingerequation (20 SE) in elliptical coordinates
is written as follows

Rev. Mex. Ffs. 47 (5) (2001) 480-488
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(30)

TABLE I. Eigenvalues of energy (in 2112/ M a2 units) and 'Y corres­
ponding to first 22 stationary states.

FIGURE 7. Increasing ordered energy eigenvalues (in 2h2/Ma 2

units) for elliptic billiards with e = 0.5 and e = 0.924. We can
appreciate that oEr,m > eEr,m' (see Table I).
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The separatrix 'Y = 0 is represented on the (a, q)-plane
by the straight line a = 2q, and it divides the plane into
two zones, the rotating region 'Y > 0 and the oscillating re­
gion 'Y < 0 (see Fig. 6). The vertical distance between an
intersection and the separatrix coincide with the value of A
in fj,2 units. The classical limit for oscillating motion is given
by a = -2q (i.e., 'Y = -1) and it is plotted in Fig. 6 as well.

The energy eigenvalues of the first 22 stationary states
corresponding to data of Fig. 6 (i.e., e = 0.5) are listed in
Table I, where we can see that oEr,m>eEr,m' The oscilla­
ting modes are always non-degenerate, whereas the rotating
modes become more degenerate as '"f increases.

In Fig. 7, we plot e,oEr,m for ellipses with geometry from
Figs. 2 and 4, (i.e., e = 0.5 and e = 0.924 respectively)
in increasing order. Since the energy depends on the fo­
cal distance [Eq. (29)], the eigenvalues must be staled ac­
cordingly to make applicable comparisons. The even and
odd eigenvalues are plotted separately in order to be aware
of their different behavior. The straight lines connect eEr,l
with oEr,l' (r = 1,2,3, ... ) as a form to visualize the ten­

dencYeEr,m :::: oEr,m as r increases. This trend is more no­
torious as e -t 0 and, in the circular limit, (i.e., e = 0) the
eigenvalues satisfy eEr,m = oEr,m' This behavior can be ap­
preciated also in the Fig. 6 where the square and circle mar­
kers get closer as the energy (i.e., q value) increases.

where e is the eccentricity of the ellipse and a is the semi­
major axis. The energy eigenvalues are proportional to qr,m'
therefore, the q-axis in Fig. 6 may be considered as an E-axis

in 2h21M j2 units. The energy eigenvalues are the projec­
tions of the intersection-points on the E-axis.

The eigenvalues of the second constant of motion A can
be directly obtained from Eq. (9) by substituting the momen­

tum operators Pe = -i1i818{ and Pll = -i1i818TJ

j2fj,2 ( • 2 82
. 2 82

)-,;r- sm TJ8e - smh ~8rf cp = Alp.

By supposing the solution Ip(~, TJ) =R(~)e(TJ), the above
Equation is separated into two Mathieu equations [Eqs. (23)
and (24)J, where a = A/fj,2 -G/2 and q = -C/4. and C is a
constant of separation. It follows that the eigenvalue problem
of A is equivalent to eigenvalue problem of H if A is chosen
such that A = (a - 2q)fj,2, where a and q are the eigen­
values of the hamiltonian problem. According to Eqs. (10)
and (29), 'Y is given by

4. Probability distributions

We first discuss the probability distributions in the quantum
mechanics billiard. Excepting for the case r = 0, each eigen­
function Ipr,... can be split into an even mode ecp...... and an
odd mode 0'P...... By using this notation, the eigenfunctions

associated to Er m in the elliptic quantum billiard are ex­
pressed in the foliowing form

Even modes:
.,cpr,... (~, 1J) = Cer ({, eqr,m)cer(TJ, eqr,m)' (31)

Odd modes:

o'Pr.m (~, 1J) = Ser(~' oqr,m)S€r(1J, oqr,m)' (32)
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FIGURE 8. Probability distributions for the first even modes corres­
ponding to data in Table I.
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FIGURE 9. Probability distributions for the first odd modes corres­
ponding to data in Table I.

In Figs. 8 and 9 we provide the probability densities
(o,ePr,m=e,o<P~, ... ) of the first even and odd modes from Ta­

ble I. To compare with the classical solution. plots of the
corresponding caustics are also included. The eccentricities
of the caustics are related to 'Y (fourth column in Table I)
by Eq. (11).

By observation of the probability distributions in Figs. 8
and 9 we can recognize that the mode iP..... has r angular no­
dal-lines corresponding to ." ::: constant curves, and m radial
nodal-Jines corresponding to ~ = constant curves including
the boundary nodal-line.

The behavior of the radial density Rr,l (~) as r increases
is shown in Fig. lOa. The plots correspond to data from Ta­
ble I, where we can observe that the first two modes Ceo,.
and Ce l •• present oscillating motion. As r increases, the ave­
rage value of the coordinate ~ --+ ~o and the motion be­
came from oscillating to rotational kind. In Figs. 1Ob-10d,
we compare the classical and quantum densities for motions
with a very similar, value. The classical distributions were
obtained by dividing the whole range for ~ (or.,,) in 50 sub­
divisions and assuming the probability as proportional to the
time spent by the particle in each subinterval. The vertical
dashed line is the classical limit of motion. A bidimensional
comparison between classical and quantum densities is given
in Fig. II.

In Figs. 8, 9, and 10 it is evident that quantum probabili­
ty distributions penetrate the forbidden zone defined by the
classical limit (j.e., caustics). In order to quantify this pene­
tration, we calculate the quotient

J [",•._(,,")]' da
w - Pfz _ "f·e'b,ied,,,."c'.'."" = __

- P, - J [",•._r,,")]' da '
ellipse

FIGURE 11. Probability distributions for the first odd modes c0rres­

ponding to data in Table I.

where Pfz is the probability inside the forbidden classical z0­

ne, Pt is the probability in the whole ellipse, da = h2cU;dT/ =
(j212){cosh 2~ - cos 2.,,) is the differential element of area,
and iPr.m(~,T/) are the eigenfunctions given by Eqs. (31)
and (32). After replacing the above expressions in W, we
obtain for even modes

where the upper limits and the constant K depend on the
forbidden zone (j.e., on the sign of ,). For rotational mo­
tion (, > 0), ~c ::: arccosh (l/ec )' "'c = 21r, and
K = 1. For oscillating motion (-y < 0). ~c = ~Ol '1m;n =
arccos (lie.), and K = 4. The double integrals in the above
equation can be separated into one-dimensional integrals. the
resulting expression is written as
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(33)

TABLE II. Comparison of the eigenvalues of energy (in 2h2/Ma 2

units) for a circular and an elliptic billiard.

Slala Circular Elliptic
E (r,m) E (r,m)

1 1.4458 0,1 1.4759 eO, 1
2 3.6705 1,1 3.7087 .1,1
3 3.7851 01,1
4 6.5937 2,1 6.7210 e2,1
5 6.7308 02,1
6 7.6178 0,2 7.7863 .0,2
7 10.1766 3,1 10.3823 e3,1
8 10.3830 03,1
9 12.3046 1,2 12.4385 .1,2
10 12,6942 01,2
11 14.3957 4,1 14.6881 .4,1
12 14.6861 04,1
13 17.7125 2,2 18.0231 .2,2
14 18.0879 02,2
15 18.7218 0,3 19.1766 .0,3
16 19.2347 5, 1 19.6260 e5,1
17 19.6260 05,1
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be separated into an even eigenfunction er,p~.m and an
odd eigenfunction ol.p~, .... This separation is irrelevant
in a circular billiard.

iii) The odd energy eigenvalues are larger than even eigen­
values. The difference in energy increases with the ec­
centricity of the ellipse. In this manner, as e -t a, both
energy eigenvalues get closer and tend to the eigen­
value of the circular billiard, the motion becomes more
rotational (elliptic caustics in the classical billiard). On
the contrary, the 'Y values in even eigenfunctions are
larger than odd eigenfunctions. The oscillating modes
are always non-degenerate, whereas the rotating modes
become more degenerate as 'Y increases.

The eigenfunctions in the elliptic quantum billiard can be
expressed as alinear combirtation of Mathieu functions. We
have shown graphically typical probability-patterns for dif­
ferent eccentricities of the elliptic boundary. The effect of el­
lipticity of the boundary has been found to be of great impor~
tance on the eigenfunction structure. We have also presented
interesting differences between the circular and eUiptical bil­
liards.

W = K J;c Ce; cosh (2{) d{ Jo"C ce; dT} - ~c C t?,.2d{ Jo"O ce; COS (2T}) dT},

11" Jo€o Ce~ cosh (2{) Ii{ - Jo€o Ce~ Ii{ Jo If ce~ cos (2T}) d1J

where the orthogonality property J;lf ce; dT} = 11", has been

used in the denominator. We apply a Newton-Cotes high­
order method to evaluate the integrals in Eq. (33). The results
for the first 22 modes are given in the sixth column of Table I.

In this subsection we compare the solutions of elliptic bil­
liards with respect to known results of the circular billiards.
The solution for the circular quantum billiard is wellwknown
in the literature [3]. For a circular billiard of radius a. the
degenerate eigenfunctions are given by

(Were)r,p ..... (p,8) = Jr(kr,mP) sinrH '

where Jr is the r-th order Bessel function, (p,8) are the
circular cylindrical coordinates, and kr,m is detennined by
satisfying the Dirichlet condition at boundary, Jr(kra) = O.
Then

4.1. Comparison with the circular billiard

J2ME'm
qr,m == kra = a n2 "

where q is the m-th zero of the J, Bessel function. Fina-',m
lIy, the energy eigenvalues are given by

(
21i' ) q;,m

Er,m = Ma2 4' (34)

In Table II we compare the first eigenvalues ofenergy for
a circular billiard of radius a, and for an elliptic billicq."of
major semi-axis a with e = 0.2 (i.e., b ~ a.gSa). According
to Eqs. (29) and (34), the elliptic and circular energy eigen­
values are proportional to qr.m/e2 and q;,m/4, respectively.
Despite the axes of the ellipse still have very similar values, it
is enough to show that each circular mode splits into an even
mode and an odd mode. In Table II we can also see that the
even modes have lower energy eigenvalues than odd modes.
By comparing Table II with respect to Table I, it is notori­
ous that decreasing the eccentricity implies a reduction in the
corresponding energy eigenvalues.

5. Conclusions

We have compared the probability distributions of periodic
trajectories inside a classical and a quantum elliptic billiard.
The most important results are summarized as follows

j) The' periodic trajectories in classical elliptic billiards
are characterized by eigenvalues ofequations involving
elliptic integrals. There are two kinds of motion, cor­
responding to elliptic and hyperbolic caustics inside
the billiard. The introduction of the parameter 'Y,
Eq. (10), is appropriate because it allows us to make
analogies between the classical and quantum case.

ij) By excepting the fundamental harmonics (r = 0), each
eigenfunction r,p~, ... in the quantum elliptic billiard can
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